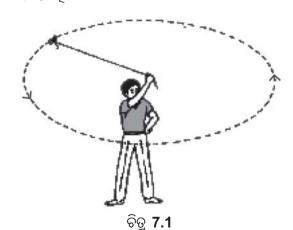


ସପ୍ଟମ ଅଧାୟ

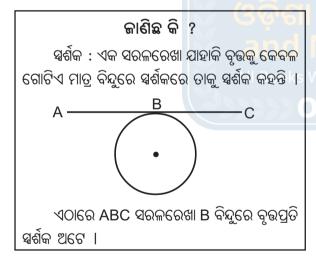
ମହାକର୍ଷିଣ (GRAVITATION)

ପୂର୍ବ ଅଧ୍ୟାୟ ଗୁଡ଼ିକରେ ଆମ୍ପେମାନେ ଜାଣିଲୁ ଯେ, ବଳହିଁ ବୟୁର ଗତିର କାରଣ । ଗୋଟିଏ ବୟୁର ଗତିର ଦିଗ ଓ ବେଗରେ ପରିବର୍ତ୍ତନ ପାଇଁ ବଳ ଆବଶ୍ୟକ । ଆୟେମାନେ ଜାଣୁ ଯେ ପୃଥିବୀ ଉପରେ କିଛି ଉଚ୍ଚତାରୁ ପଡୁଥିବା ବୟୁର ଗତିର ଦିଗ ସର୍ବଦା ପୃଥିବୀର କେନ୍ଦ୍ର ଆଡ଼କୁ ନିମ୍ନଗାମୀ ହୋଇଥାଏ । ସୂର୍ଯ୍ୟ ଚତୁର୍ଦ୍ଦିଗରେ ଗ୍ରହମାନେ ଓ ପୃଥିବୀ ଚାରିପଟେ ଚନ୍ଦ୍ର ଅହରହ ପୂର୍ଣ୍ଣନ କରନ୍ତି । ଏହି ସବୁ କ୍ଷେତ୍ରରେ ଉଚ୍ଚରୁ ତଳକୁ ପଡୁଥିବା ବୟୁ ଉପରେ ଏବଂ ଘୂର୍ଣ୍ଣନରତ ଗ୍ରହ ଓ ଚନ୍ଦ୍ର ଉପରେ ନିର୍ଣ୍ଣିତ ଭାବେ କୌଣସି ବାହ୍ୟବଳ କାର୍ଯ୍ୟ କରୁଛି । ଏହି ବଳ ପ୍ରଭାବରେ ଏମାନେ ଗତି କରୁଛନ୍ତି । ସାର୍ ଆଇଜାକ୍ ନିଉଟନ୍ ଅନୁଧ୍ୟାନ କରି କାଣିପାରିଥିଲେ ଯେ, ଏ ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ କାର୍ଯ୍ୟ କରୁଥିବା ବଳର ଲକ୍ଷଣ ଏକ ଓ ଅଭିନ୍ନ ଅଟେ । ଏହି ବଳକୁ ମହାକର୍ଷଣ ବଳ (Gravitational force) କୁହାଯାଏ । ବିଶ୍ୱର ଯେ କୌଣସି ଦୁଇଟି ବୟୁ ମଧ୍ୟରେ ଏହି ବଳ କାର୍ଯ୍ୟ କରିଥାଏ ।

ଏହି ଅଧ୍ୟାୟରେ ଆମେ ମହାକର୍ଷଣ ବଳ ଓ ତା'ର ନିୟମ ବିଷୟରେ ଜାଣିବା । ପୁନଣ୍ଟ ପୃଥିବୀର ମହାକର୍ଷଣ ବଳ ଓ ତାହାର ପ୍ରଭାବରେ ବୟୁ କିପରି ଗତିକରେ ସେ ବିଷୟରେ ଆଲୋଚନା କରିବା । ଭିନ୍ନ ଭିନ୍ନ ସ୍ଥାନରେ ବୟୁର ଓଜନ ଅଲଗା ହୁଏ । ସ୍ଥାନ ଅନୁଯାୟୀ ବୟୁର ଓଜନରେ ହେଉଥିବା ପରିବର୍ତ୍ତନ ଏବଂ ବୟୁଟିଏ ଜଳରେ ଭାସିବାପାଇଁ ଆବଶ୍ୟକ ସର୍ତ୍ତ ଇତ୍ୟାଦି ବିଷୟରେ ମଧ୍ୟ ଆଲୋଚନା କରିବା ।


7.1 ମହାକର୍ଷଣ (Gravitation)

ଆମେ ଜାଣିଛୁ ପୃଥିବୀ ଚାରିପଟେ ଚନ୍ଦ୍ର ଯୂର୍ତ୍ତନ କରେ । ଗୋଟିଏ ବୟୁକୁ ଉପରକୁ ଫିଙ୍ଗିଲେ ଏହା କିଛି ଉଚ୍ଚତାକୁ ଯାଇ ପୁନଶ୍ଚ ତଳକୁ ଖସିପଡ଼େ । ଥରେ ସାର୍ ଆଇଜାକ୍ ନିଉଟନ୍ ଗୋଟିଏ ଗଛତଳେ ବସିଥିବା ବେଳେ ଗଛରୁ ଗୋଟିଏ ସେଓ ଛିଡ଼ି ତାଙ୍କ ସମ୍ମୁଖରେ ପଡ଼ିଲା । ଏହି ଘଟଣା ନିଉଟନଙ୍କ ମନରେ ଅନେକ ପ୍ରଶୁ ସୃଷ୍ଟି କଲା । ସେ ଭାବିଲେ ଯଦି ପୃଥିବୀ ସେଓଟିକୁ ନିଜଆଡ଼କୁ ଆକର୍ଷଣ କରିପାରୁଛି, ତେବେ ପୃଥିବୀ କ'ଣ ଚନ୍ଦ୍ରକୁ ମଧ୍ୟ ନିଜ ଆଡ଼କୁ ଆକର୍ଷଣ କରେ ? ଉଭୟ କ୍ଷେତ୍ରରେ ପ୍ରଯୁକ୍ତ ବଳ କ'ଣ ଏକ ପ୍ରକାରର ? ସେ ଶେଷରେ ଏହି ସିଦ୍ଧାନ୍ତରେ ଉପନୀତ ହେଲେ ଯେ, ଉଭୟ କ୍ଷେତ୍ରରେ ଏକ ପ୍ରକାରର ବଳ କାର୍ଯ୍ୟକାରୀ ହେଉଛି ।


ଚନ୍ଦ୍ର ପୃଥିବୀ ଚାରିପଟେ ଘୂରୁଥିବାବେଳେ ତା'ର ଘୂର୍ଣ୍ଣନ ପଥର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁରେ ଚନ୍ଦ୍ର ପୃଥିବୀ ଆଡ଼କୁ ଆକର୍ଷିତ ହେଉଛି । ଏହି ଆକର୍ଷଣ ବଳଯୋଗୁ ଚନ୍ଦ୍ର ନିଜ କକ୍ଷପଥରୁ କେବେବି ବିଚ୍ୟୁତ ନହୋଇ ପୃଥିବୀ ଚାରିପଟେ ବୃତ୍ତାକାର ପଥରେ ଅନବରତ ଘୂରୁଛି । ଆମେ ଚନ୍ଦ୍ରକୁ ପୃଥିବୀ ଆଡ଼କୁ ଆକର୍ଷିତ ହୋଇ କେବେବି ଖସି ପଡ଼ିଯିବାର ଦେଖୁନାହୁଁ ।

ତ୍ରମ ପାଇଁ କାମ : 7.1

ଖଣିଏ ସୂତା ନିଅ । ସୂତାର ଗୋଟିଏ ମୁଣ୍ତରେ ଗୋଟିଏ ଛୋଟ ଗୋଲକଟିଏ ବାନ୍ଧି ଅନ୍ୟ ମୁଣ୍ଡଟିକୁ ହାତରେ ଧରି ଗୋଲକଟିକୁ ବୁଲାଅ । ଗୋଲକର ଗତିକୁ ଲକ୍ଷ୍ୟକର । ଏହାପରେ ଗୋଲକଟି ଘୂରୁଥିବା ସମୟରେ ହାତରୁ ସୂତାଟିକୁ ଛାଡ଼ିଦିଅ । ବର୍ତ୍ତମାନ ଗୋଲକଟିର ଗତିର ଦିଗକୁ ଲକ୍ଷ୍ୟକର । କ'ଣ ଦେଖଲ ?

ବୃତ୍ତାକାର ପଥରେ ଘୃରିଲା ବେଳେ ଗୋଲକର ଗତିର ଦିଗ ସେହି ବୂଢାକାରପଥର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁରେ ପରିବର୍ତ୍ତିତ ହେଉଥାଏ । ଏହି ଦିଗ ପରିବର୍ତ୍ତନ ବୃତ୍ତାକାରପଥର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁରେ ଗୋଲକର ପରିବେଗରେ ପରିବର୍ତ୍ତନ ଯୋଗୁ ହୋଇଥାଏ । ତେଣୁ ଘୂର୍ୟନରତ ଗୋଲକରେ ତା'ର ପରିବେଗର ପରିବର୍ତ୍ତନ ଯୋଗୁ ତୃରଣ ଥାଏ । ଏହି ତୃରଣ ଯେଉଁ ବଳଦ୍ୱାରା ସୃଷି ହୁଏ ତାହାକୁ କେନ୍ଦ୍ରାଭିସାରୀ (centripetal) ବଳ କୁହାଯାଏ, କାରଣ ଏହି ବଳର ଦିଗ ସର୍ବଦା ବୃତ୍ତାକାର ଘୂର୍ଣ୍ଣନପଥର କେନ୍ଦ୍ରଆଡ଼କୁ ରହିଥାଏ । କୌଣସି ବସ୍ତୁ ବୃତ୍ତାକାର ପଥରେ ଘୃରିବା ପାଇଁ ଏକ କେନ୍ଦାଭିସାରୀ ବଳ ଆବଶ୍ୟକ କରେ । ଏହି ବଳ ଯେତେ ସମୟ ପର୍ଯ୍ୟନ୍ତ ଗୋଲକ ଉପରେ କାର୍ଯ୍ୟକାରୀ ହୋଇଥାଏ ସେତେବେଳ ପର୍ଯ୍ୟନ୍ତ ଗୋଲକଟି ଘୂରୁଥାଏ । ସୂତାକୁ ଛାଡ଼ିଦେଲେ ବା ସୂତାଟି ଛିଣ୍ଡିଗଲେ ଏହି କେନ୍ଦ୍ରାଭିସାରୀ ବଳ ଉଭେଇ (vanish) ଯାଏ । ଏହା ଫଳରେ ଗୋଲକଟି ଆଉ ବୃତ୍ତାକାର ପଥରେ ଘୃରି ପାରେନା । ଏହା ସେହି ପଥରୁ ବିଚ୍ୟୁତ ହୋଇ ବୃତ୍ତ ପ୍ରତି ଥିବା ସ୍ପର୍ଶକ ଦିଗରେ ବୃତ୍ତଠାରୁ ବିଚ୍ଛିନ୍ନ ହୋଇ ଚାଲିଯାଏ । ତା'ର ଘୂର୍ଣ୍ଣନ ଗତି ଭାଙ୍ଗିଯାଏ ।

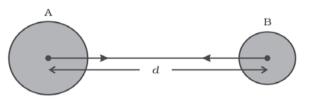
ଆମେ ଜାଣୁ ଯେ ଗଛରୁ ଛିଣ୍ଠିଗଲା ପରେ ସେଓ ପୃଥିବୀ ଆଡ଼କୁ ଆକର୍ଷିତ ହୋଇ ତଳକୁ ଖସିପଡ଼େ । ତେବେ ସେଓଟି କ'ଣ ପୃଥିବୀକୁ ନିଜଆଡ଼କୁ ଆକର୍ଷିତ କରେ ? ଯଦି ହଁ ତେବେ ପୃଥିବୀ କାହିଁକି ସେଓ ଆଡ଼କୁ ଗତି କରୁନାହିଁ ? ନିଉଟନଙ୍କ ଗତି ସୟନ୍ଧୀୟ ତୃତୀୟ ନିୟମାନୁସାରେ ସେଓଟି ମଧ୍ୟ ପୃଥିବୀକୁ ନିଜଆଡ଼କୁ ଆକର୍ଷିତ କରେ । ନିଉଟନଙ୍କ ଗତି ସୟନ୍ଧୀୟ ଦ୍ୱିତୀୟ ନିୟମାନୁଯାୟୀ,

ବଳ = ବୟୁତ୍ୟ
$$\times$$
 ତ୍ୱରଣ
$$\Rightarrow F = ma$$

$$\Rightarrow a = \frac{F}{m}$$

ଯଦି ପ୍ରଯୁକ୍ତବଳ ସ୍ଥିର ରୁହେ ତେବେ

a
$$\alpha \frac{1}{m}$$


ଏକ ସ୍ଥିର ବଳଦ୍ୱାରା ବସ୍ତୁରେ ସୃଷ୍ଟି ହେଉଥିବା ତ୍ୱରଣ ବସ୍ତୁର ବସ୍ତୁତ୍ୱ ସହିତ ପ୍ରତିଲୋମାନୁପାତୀ ହୋଇଥାଏ । ଯେହେତୁ ପୃଥିବୀର ବସ୍ତୁତ୍ୱ ସେଓର ବସ୍ତୁତ୍ୱ ଠାରୁ ଯଥେଷ୍ଟ ବେଶି ତେଣୁ ସେଓର ଆକର୍ଷଣ ବଳ ଦ୍ୱାରା ପୃଥିବୀରେ ଅତି ଅଳ୍ପ ଓ ନଗଣ୍ୟ ତ୍ୱରଣ ସୃଷ୍ଟି ହୁଏ । ତେଣୁ ପୃଥିବୀ ସେଓ ଆଡ଼କୁ ଗତି କରିବା କଣାପଡ଼େନା । ଏହି କାରଣରୁ ହିଁ ପୃଥିବୀ ମଧ୍ୟ ଚନ୍ଦ୍ର ଚାରିପଟେ ଘୂରିନଥାଏ, ଯଦିଓ ଚନ୍ଦ୍ର ପୃଥିବୀକୁ ଆକର୍ଷଣ କରେ ।

ଆମ ସୌରଜଗତରେ ସବୁ ଗ୍ରହ ସୂର୍ଯ୍ୟ ଚାରିପଟେ ଘୂରଡି । ସୂର୍ଯ୍ୟ ଓ ପ୍ରତ୍ୟେକ ଗ୍ରହ ମଧ୍ୟରେ ଏକ ବଳ କାର୍ଯ୍ୟ କରିଥାଏ ଯାହା ଯୋଗୁଁ ପ୍ରତ୍ୟେକ ଗ୍ରହ ସୂର୍ଯ୍ୟ ଚାରିପଟେ ଘୂରଡି । ଏହି ତଥ୍ୟକୁ ଭିଭିକରି ନିଉଟନ ଏକ ସିଦ୍ଧାନ୍ତରେ ଉପନୀତ ହେଲେ ଯେ, ପୃଥିବୀ କେବଳ ଚନ୍ଦ୍ର ବା ସେଓକୁ ଆକର୍ଷଣ କରେନି ପ୍ରତ୍ୟେକ ଜାଗତିକ ବସ୍ତୁ ପରମ୍ଭରକୁ ଆକର୍ଷଣ କରନ୍ତି । ଯେ କୌଣସି ଦୁଇଟି ଜଡ଼ୀୟ ବସ୍ତୁ ମଧ୍ୟରେ ଥିବା ଏହି ଆକର୍ଷଣ ବଳକୁ 'ମହାକର୍ଷଣ ବଳ' କୁହାଯାଏ । ମାତ୍ର ପୃଥିବୀର ମହାକର୍ଷଣ ବଳକୁ ଏକ ବିଶେଷ ନାମ ଦେଇ ମାଧ୍ୟାକର୍ଷଣ ବଳ (Force of gravity) କୁହାଯାଏ ।

7.1.1 ସାର୍ବିଜନୀନ ମହାକର୍ଷଣ ନିୟମ (Universal Law of Gravitation)

ବିଶ୍ୱର ପ୍ରତ୍ୟେକ ବସ୍ତୁ ଅନ୍ୟ ବସ୍ତୁକୁ ନିକଆଡ଼କୁ ଆକର୍ଷଣ କରେ । ଏହି ଆକର୍ଷଣ ବଳର ପରିମାଣ ବସ୍ତୁଦ୍ୱୟର ବସ୍ତୁଦ୍ୱର ଗୁଣଫଳ ସହ ସମାନୁପାତୀ ଏବଂ ସେମାନଙ୍କ ବସ୍ତୁତ୍ୱ କେନ୍ଦ୍ର ମଧ୍ୟରେ ଥିବା ଦୂରତାର ବର୍ଗ ସହ ପ୍ରତିଲୋମାନୁପାତୀ (Inversely proportional) ଅଟେ । ଏହି ବଳ ବସ୍ତୁଦ୍ୱୟର ବସ୍ତୁତ୍ୱକେନ୍ଦ୍ରକୁ ସଂଯୋଗ କରୁଥିବା ସରଳରେଖା ଦିଗରେ କାର୍ଯ୍ୟକାରୀ ହୁଏ ।

ଏହାକୁ ସାର୍ବଜନୀନ ମହାକର୍ଷଣ ନିୟମ କୂହାଯାଏ । ବିଶ୍ୱର ସେ କୌଣସି ସ୍ଥାନରେ ସେ କୌଣସି ଦୁଇଟି ଜଡ଼ୀୟବୟୁ ମଧ୍ୟରେ ଏ ନିୟମ ପ୍ରଯୁଜ୍ୟ ।

ଚିତ୍ର 7.2 ବସ୍ତୁ ଦ୍ୱୟର କେନ୍ଦ୍ରକୁ ସଂଯୋଗ କରୁଥିବା ସରଳରେଖାରେ ପ୍ରଯୁକ୍ତ ମହାକର୍ଷଣ ବଳ ।

ମନେକର ଦୁଇଟି ବସ୍ତୁ A ଓ B ର ବସ୍ତୁତ୍ୱ ଯଥାକ୍ରମେ M ଓ m ଅଟେ । ଉଭୟ ପରସ୍କରଠାରୁ d ଦୂରତାରେ ଅବସ୍ଥାନ କରୁଛନ୍ତି ଓ ସେମାନଙ୍କ ମଧ୍ୟରେ କାର୍ଯ୍ୟ କରୁଥିବା ମହାକର୍ଷଣ ବଳ ମନେକର F ଅଟେ ।

ମହାକର୍ଷଣ ନିୟମାନୁଯାୟୀ,

$$F \alpha M \times m$$
(7.1)

ଏବଂ F
$$\alpha \frac{1}{d^2}$$
(7.2)

(7.1) ଓ (7.2) ଦ୍ୟକୁ ଏକତ୍ର କରି <mark>ଲେଖିଲେ,</mark>

$$F \alpha \frac{M \times m}{d^2}$$
(7.3)

କିମ୍ବା
$$F = G \frac{M \times m}{d^2}$$
 (7.4)

ଏଠାରେ G ଏକ ସମାନୁପାତୀ ସ୍ଥିରାଙ୍କ ଯାହାକୁ ସାର୍ବଜନୀନ ମହାକର୍ଷଣୀୟ ସ୍ଥିରାଙ୍କ (Universal Gravitational Constant) କୁହାଯାଏ । ଏହାର ମୂଲ୍ୟ ବୟୁଗୁଡ଼ିକର ପ୍ରକୃତି, ଗଠନ, ସେମାନଙ୍କର ବୟୁତ୍ୱ ବା ଅବସ୍ଥାନ ଉପରେ ନିର୍ଭର କରେ ନାହିଁ । ଏହାର ମୂଲ୍ୟ ସର୍ବତ୍ର ସମାନ । ତେଣୁ ଏହାକୁ ସାର୍ବଜନୀନ ମହାକର୍ଷଣୀୟ ଧୁବାଙ୍କ କୁହାଯାଏ । ଦୁଇଟି ବୟୁ ମଧ୍ୟରେ କାର୍ଯ୍ୟ କରୁଥିବା ମହାକର୍ଷଣ ବଳ ସେହି ବୟୁ ଦ୍ୟର ବୟୁତ୍ୱ ଓ ତାଙ୍କ ମଧ୍ୟରେ ଥିବା ଦୂରତ୍ୱ ଉପରେ ନିର୍ଭର କରେ । ଏହି ବଳ ସେହି ବୟୁ ଦ୍ୟରକୁ ଯୋଗ କରୁଥିବା ସରଳରେଖା ଦିଗରେ କାର୍ଯ୍ୟ କରେ ।

SI ଏକକ ପଦ୍ଧତିରେ ଏହାର ମୂଲ୍ୟ 6.673×10^{-11} ନିଉଟନ ମି 2 / କିଗ୍ରା 2 । ସମୀକରଣ (7.4) ରେ,

ଯଦି M=m=1 କିଗ୍ରା ଏବଂ d=1 ମି ହୁଏ, ତେବେ $F=G=6.673\times10^{-11}$ ନିଉଟନ ମି 2 / କିଗ୍ରା 2 ହେବ । ଏହି ମହାକର୍ଷଣ ବଳର ପରିମାଣ ବହୁତ କମ୍ । ଏଥିପାଇଁ ମହାକର୍ଷଣ ବଳକୁ ଦୁର୍ବଳ ବଳ (weak force of nature) କୁହାଯାଏ । ଅନ୍ୟାନ୍ୟ ବଳ ତୁଳନାରେ ଏହାକୁ ଅନେକ କ୍ଷେତ୍ରରେ ଉପେକ୍ଷା କରାଯାଇଥାଏ ।

ସାର୍ ଆଇଜାକ୍ ନିଉଟନ୍ ଇଂଲଞ୍ଚର ଗ୍ରାନ୍ଥାମ (Grantham) ନିକଟସୁ ଉଲ୍ସ୍ଥୋପ୍ (Woolsthorpe) ଠାରେ ଜନ୍ମଗ୍ରହଣ କରିଥିଲେ । ବିଜ୍ଞାନର ଇତିହାସରେ ତାଙ୍କୁ ସବୁଠାରୁ ପ୍ରଭାବଶାଳୀ ତତ୍ତ୍ୱିତ୍ କୁହାଯାଏ । ସେ

ଏକ ଗରିବ ଚାଷୀ ପରିବାରରେ ଜନ୍ମଗ୍ରହଣ କରିଥିଲେ । ମାତ୍ର ତାଙ୍କୁ ଚାଷକାର୍ଯ୍ୟ ଆସୁନଥିଲା । 1661 ମସିହାରେ କ୍ୟାନ୍ତ୍ରିଙ୍କ୍ ବିଶ୍ୱବିଦ୍ୟାଳୟକୁ ଉଚ୍ଚଶିକ୍ଷା ପାଇଁ ତାଙ୍କୁ ପଠାଗଲା । 1665 ମସିହାରେ କ୍ୟାନ୍ତ୍ରିଙ୍କରେ ପ୍ଲେଗ ରୋଗ ବ୍ୟାପିବାରୁ ନିଉଟନ୍ ଗୋଟିଏ ବର୍ଷ ଛୁଟି ନେଲେ । ସେହି ଛୁଟି ସମୟ ଭିତରେ ସେଓଟି ଉପରକୁ ନଯାଇ ଗଛରୁ ତଳକୁ ପଡ଼ିବା ଘଟଣା ତାଙ୍କୁ ଚନ୍ଦ୍ର ଓ ପୃଥିବୀ ମଧ୍ୟରେଥିବା ଆକର୍ଷଣ ବିଷୟରେ ଭାବିବାକୁ ପ୍ରେରଣା ଦେଲା ଓ ପରେ ସେ ମହାକର୍ଷଣ ବଳକୁ ଆବିଷ୍କାର କଲେ ।

ଉଦାହରଣ: 7.1

ପୃଥିବୀ ଓ ଚନ୍ଦ୍ରର ବୟୁତ୍ୱ ଯଥାକୁମେ 6×10^{24} କିଗ୍ରା ଓ 7.4×10^{22} କିଗ୍ରା ଅଟେ । ଯଦି ଉଭୟଙ୍କ ମଧ୍ୟରେ ଦୂରତା 3.84×10^5 କିମି ହୁଏ, ତେବେ ପୃଥିବୀ ଦ୍ୱାରା ଚନ୍ଦ୍ର ଉପରେ ପ୍ରଯୁକ୍ତ ମାଧ୍ୟାକର୍ଷଣ ବଳର ପରିମାଣ କଳନା କର । $(G = 6.7 \times 10^{-11} \, \hat{\mathsf{h}}$ ଉଟନ. $\hat{\mathsf{h}}^2/$ କିଗ୍ରା 2)

ଉତ୍ତର :

ପୃଥିବୀର ବୟୂତ୍ୱ M = 6×10^{24} କିଗ୍ରା ଚନ୍ଦ୍ରର ବୟୂତ୍ୱ m = 7.4×10^{22} କିଗ୍ରା ପୃଥିବୀ ଓ ଚନ୍ଦ୍ର ମଧ୍ୟରେ ଦୂରତା d = 3.84×10^5 କିମି = 3.84×10^8 ମି G = 6.7×10^{-11} ନିଉଟନ୍ ମି 2 /କିଗ୍ରା 2

୍ତ୍ର ପୃଥିବୀ ଚନ୍ଦ୍ର ଉପରେ ପ୍ରୟୋଗ କରୁଥିବା ବଳ

$$F = G \frac{Mm}{d^2}$$

 $=rac{6.7 imes10^{-11}$ ନିଉଟନ୍ ମିଂ/କିଗ୍ରା $^2 imes6 imes10^{24}$ କିଗ୍ରା $imes7.4 imes10^{22}$ କିଗ୍ରା $=rac{(3.84 imes10^8$ ମି) 2

= 2.01×10²⁰ ନିଉଟନ

ପ୍ରଶ୍ନ : (Question)

 ସାର୍ବଜନୀନ ମହାକର୍ଷଣ ନିୟମ କ'ଣ ଲେଖ । ଏହାର ଗାଣିତିକ ପରିପ୍ରକାଶଟି ଉଲ୍ଲେଖ କର । ସେଥିରେ ବ୍ୟବହୃତ ସଙ୍କେଡମାନଙ୍କୁ ସୂଚିତ କର ।

7.1.2 ମହାକର୍ଷଣ ନିୟମର ଗୁରୁତ୍ୱ : (Importance of the Universal Law of Gravitation)

ମହାକର୍ଷଣ ବଳ ଏକ ଦୂର୍ବଳ ବଳ, ମାତ୍ର ମହାକାଶରେ ଗ୍ରହ ନକ୍ଷତ୍ର ଓ ଅନ୍ୟାନ୍ୟ କଡ଼ୀୟ ବୟୁର ଅବସ୍ଥାନ ବା ଗତି ଏହି ବଳ ଉପରେ ନିର୍ଭର କରିଥାଏ ।

- (i) ଏହି ବଳଯୋଗୁଁ ଆୟେମାନେ ପୃଥିବୀ ପୃଷ୍ଠରେ ଅବସ୍ଥାନ କରିଛୁ ।
- (ii) ଏହି ବଳଯୋଗୁଁ ସୂର୍ଯ୍ୟ ଚାରିପଟେ ଗ୍ରହମାନେ ଓ ପୃଥିବୀ ଚାରିପଟେ ଚନ୍ଦ୍ର ଅହରହ ଘୃରୁଛନ୍ତି ।

7.2 ମୁକ୍ତ ପତନ (Free Fall)

ବାୟୁ ମଧ୍ୟରେ ବସ୍ତୁ ଗଡିକଲାବେଳେ ବା ଖସିଲାବେଳେ ବାୟୁର ପ୍ରତିରୋଧ ନଗଣ୍ୟ ହୁଏ । ତେଣୁ ଟେକାଟିଏ ତଳକୁ ପୃଥିବୀ ଆଡ଼କୁ ଖସିଲାବେଳେ ତାହା କେବଳ ପୃଥିବୀର ମହାକର୍ଷଣ ବଳ ଯୋଗୁଁ ଖସେ । ବସ୍ତୁର ଏ ପ୍ରକାର ଗଡିକୁ ମୁକ୍ତ ପତନ କୃହାଯାଏ । ଯଦି ଗୋଟିଏ ବୟୁ କେବଳ ମହାକର୍ଷଣ ବଳର ପ୍ରଭାବ ଯୋଗୁଁ ଗତି କରୁଥାଏ ତେବେ ତାହାର ସେ ଗତିକୁ ମୁକ୍ତ ପତନ (free fall) ଗତି କୁହାଯାଏ । ସେତେବେଳେ ତାହାର ତ୍ୱରଣ ପୃଥିବୀର ଆକର୍ଷଣ ବା ମାଧ୍ୟାକର୍ଷଣ ଯୋଗୁଁ ଜାତ ହୋଇଥାଏ । ତେଣୁ ଏହାକୁ ମାଧ୍ୟାକର୍ଷଣଜନିତ ତ୍ୱରଣ (acceleration due to gravity) କୁହାଯାଏ । ଏହାକୁ 'g' ଅକ୍ଷର ଦ୍ୱାରା ସୂଚିତ କରାଯାଏ । ଏହାର ଦିଗ ସର୍ବଦା ତଳକୁ ଅର୍ଥାତ୍ ପୃଥିବୀ ଆଡ଼କୁ ହୋଇଥାଏ ।

ବଞ୍ଚୁଟିଏ ତଳକୁ ପଡୁଥିବା ବେଳେ ତ୍ୱରଣ ଗତି ଦିଗରେ ହେଉଥିବାରୁ ଏହାକୁ ଯୁକ୍ତାମ୍ପକ ଓ ବଞ୍ଚୁଟି ଉପରକୁ ଯାଉଥିବା ବେଳେ ତ୍ୱରଣର ଦିଗ ଗତି ଦିଗର ବିପରୀତ ହୋଇଥିବାରୁ ଏହାକୁ ବିଯୁକ୍ତାମ୍ପକ ବୋଲି ଧରଯାଏ । ପୃଥିବୀର ଭିନ୍ନ ଭିନ୍ନ ସ୍ଥାନରେ ଓ ପୃଥିବୀ ଉପରେ ଭିନ୍ନ ଭିନ୍ନ ଉଚ୍ଚତାରେ 'g' ମୂଲ୍ୟ ଭିନ୍ନ ହୋଇଥାଏ । 'g' ର ଏକକ ମି/ସେ² ଅଟେ ।

ନିଉଟନଙ୍କ ଗତିର ଦ୍ୱିତୀୟ ନିୟମାନୁସାରେ, ବଳର ପରିମାଣ ବସ୍ତୁତ୍ୱ ଓ ଦ୍ୱରଣର ଗୁଣଫଳ ସହ ସମାନ । ମନେକରାଯାଉ m ବସ୍ତୁତ୍ୱର ଏକ ବସ୍ତୁ ମୁକ୍ତ ଭାବରେ ଭୂପୃଷ୍ଠରେ ପଡୁଛି । ଏଠାରେ ବସ୍ତୁର ତ୍ୱରଣ ହେଉଛି ମାଧ୍ୟାକର୍ଷଣଜନିତ ତ୍ୱରଣ 'g' । ପୃଥିବୀ ଦ୍ୱାରା ବସ୍ତୁ ଉପରେ ପ୍ରୟୋଗ ହେଉଥିବା ବଳ,

olut
$$F = mg \dots (7.5)$$

ସମୀକରଣ (7.4) ଓ (7.5) ଦ୍ୱୟକୁ ଏକତ୍ର କରି ଆମେ ପାଇବା,

$$mg = G \frac{M \times m}{d^2} \dots (7.6)$$

କିନ୍ୟା,
$$g = \frac{GM}{d^2}$$
....(7.7)

ସମୀକରଣ (7.7) ରେ M ପୃଥିବୀର ବସ୍ତୁତ୍ୱ ଓ d ପୃଥିବୀଠାରୁ ବସ୍ତୁର ଦୂରତା ଅଟେ ।

ମନେକରାଯାଉ ବସ୍ତୁଟି ପୃଥିବୀ ପୃଷ୍ପରେ ଅବସ୍ଥାନ କରୁଛି । ଏଠାରେ d = R (R ପୃଥିବୀର ବ୍ୟାସାର୍ଦ୍ଧ ଅଟେ) ସମୀକରଣ (7.7) ରେ d = R ସ୍ଥାପନ କଲେ,

$$g = \frac{GM}{R^2}$$
....(7.8)

ପୃଥିବୀ ପୃଷରେ 'g'ର ମୂଲ୍ୟ Rର ମୂଲ୍ୟ ଉପରେ ନିର୍ଭର କରେ । ପୃଥିବୀ ପୃଷରେ 'g'ର ମୂଲ୍ୟ R² ସହିତ ପ୍ରତିଲୋମାନୁପାତୀ ଅଟେ । ପୃଥିବୀ ଏକ ସମ୍ପୂର୍ଣ୍ଣ ଗୋଲକ ନୁହେଁ । ମେରୁ ନିକଟରେ ଏହା ଚେପ୍ଟା । ତେଣୁ ମେରୁ ନିକଟରେ Rର ମୂଲ୍ୟ ସର୍ବନିମ୍ନ ଓ ବିଷୁବରେଖା ସ୍ଥାନରେ Rର ମୂଲ୍ୟ ସର୍ବାଧିକ ଅଟେ । ଏଣୁ 'g'ର ମୂଲ୍ୟ ବିଷୁବରେଖା ନିକଟରେ କମ୍ ଓ ମେରୁ ନିକଟରେ ଅଧିକ ହୋଇଥାଏ । ବିଷୁବରେଖାରୁ ପୃଥିବୀ ପୃଷରେ ମେରୁ ନିକଟକୁ ଗଲେ 'g'ର ମୂଲ୍ୟ ବୃଦ୍ଧିପାଏ ଓ ମେରୁ ନିକଟରେ ସର୍ବାଧିକ ହୁଏ ।

7.2.1 'g' ର ମୂଲ୍ୟ ନିରୂପଣ (To Calculate the Value of g)

ସମୀକରଣ (7.8) ଦ୍ୱାରା 'g'ର ମୂଲ୍ୟ ନିରୂପଣ କରିହେବ । ଏହି ସମୀକରଣରେ ସାର୍ବଜନୀନ ମହାକର୍ଷଣୀୟ ଧୁବାଙ୍କ Gର ମୂଲ୍ୟ 6.7×10⁻¹¹ ନିଉଟନ ମି²/କିଗ୍ରା², ପୃଥିବୀର ବୟୁତ୍ୱ Mର ମୂଲ୍ୟ 6×10²⁴ କିଗ୍ରା ଏବଂ ପୃଥିବୀର ବ୍ୟାସାର୍ଦ୍ଧ Rର ମୂଲ୍ୟ 6.4×10⁶ ମି ପ୍ରତିସ୍ଥାପନ କଲେ,

$$g = \frac{GM}{R^2}$$

$$= \frac{6.7 \times 10^{-11} \hat{\rho}_{\omega} \text{Geq.} \hat{\rho}^2 / \hat{\varphi}_{\omega}^2 \times 6 \times 10^{24} \hat{\varphi}_{\omega}^2}{(6.4 \times 10^6 \hat{r})^2 \text{ All Books}}$$

$$= 9.8 \hat{r}^2 / 69^2$$

: ମାଧ୍ୟାକର୍ଷଣ ଜନିତ ତ୍ୱରଣ 'g'ର ମୂଲ୍ୟ 9.8 ମି/ସେ² ଅଟେ ।

7.2.2 : ମାଧାକର୍ଷିଣ ବଳ ପ୍ରଭାବରେ ବସ୍ତୁର ଗତି (Motion of Objects Under the Influence of Gravitational Force of the Earth)

ତୁମ ପାଇଁ କାମ : 7.2

ସମାନ ଉଚ୍ଚତାରୁ ଖଣ୍ଡିଏ ପର ଓ ଗୋଟିଏ ଗୋଡ଼ିକୁ ଏକା ସାଙ୍ଗରେ ତଳକୁ ପକାଅ । କେଉଁଟି ପ୍ରଥମେ ତଳେ ପଡ଼ୁଛି, ତାହା ଲକ୍ଷ୍ୟ କର । ପୁନଶ୍ଚ ଗୋଟିଏ ବାୟୁ ଶୂନ୍ୟ କାଚଘର ଭିତରେ ସେହି ପର ଓ ଗୋଡ଼ିକୁ ସମାନ ଉଚ୍ଚତାରୁ ଆଉ ଥରେ ତଳକୁ ପକାଅ ଓ ଦେଖ ସେମାନେ କିପରି ଭାବରେ ତଳେ ପଡ଼ୁଛନ୍ତି । ପ୍ରଥମ କ୍ଷେତ୍ରରେ ଗୋଡ଼ିଟି ଶୀଘ୍ର ତଳେ ପଡ଼ିବ । ଏ କ୍ଷେତ୍ରରେ ବାୟୁର ଘର୍ଷଣଜନିତ ପ୍ରତିରୋଧ ବଳ କାର୍ଯ୍ୟକରେ, ଯାହା ହାଲୁକା ପରର ଗତିକୁ ବାଧାଦିଏ । ତେଣୁ ତାହା ବିଳୟରେ ତଳେ ପଡ଼େ । ମାତ୍ର ଦ୍ୱିତୀୟ କ୍ଷେତ୍ରରେ ଯେହେତୁ ଘରଟି ବାୟୁଶୂନ୍ୟ, ତେଣୁ ବାୟୁସହ ଘର୍ଷଣଜନିତ ପ୍ରତିରୋଧ ବଳ ନଥାଏ । ତେଣୁ ଉଭୟେ ସମାନ ସମୟରେ ତଳେ ପଡ଼ିବେ । ମୁକ୍ତ ପତନରେ ବୟୁର ଗତି ସମୀକରଣର ରୂପ ସମତ୍ୱରଣରେ ଗତି କରୁଥିବା ବୟୁର ଗତି ସମୀକରଣର ରୂପ ସହ ସମାନ ।

ମୁକ୍ତପତନ ସମୀକରଣରେ କେବଳ ତ୍ୱରଣକୁ 'a' ପରିବର୍ତ୍ତେ 'g' ନିଆଯାଏ । ମନେକର ଗୋଟିଏ ବସ୍ତୁ 't' ସମୟ ପାଇଁ ମୁକ୍ତ ପତନରେ ଖସୁଛି । u ଓ v ଯଥାକ୍ରମେ ବସ୍ତୁର ପ୍ରାରୟିକ ଓ ଅନ୍ତିମ ବେଗ ହେଲେ ଏବଂ t ସମୟରେ ବସ୍ତୁ ଦ୍ୱାରା ଅତିକ୍ରାନ୍ତ ଦୂରତାକୁ s ନେଲେ,

$$v = u + gt(7.9)$$

$$s = ut + \frac{1}{2}gt^2$$
....(7.10)

$$v^2 = u^2 + 2gs$$
(7.11)

ତ୍ୱରଣର ଦିଗ ବୟୁର ଗତି ଦିଗରେ ହେଲେ, 'g'ର ମୂଲ୍ୟ ଯୁକ୍ତାତ୍ପକ ଓ ଗତିଦିଗର ବିପରୀତ ହେଲେ 'g'ର ମୂଲ୍ୟ ବିଯୁକ୍ତାତ୍ପକ ବୋଲି ଧରାଯାଏ ।

ଉଦାହରଣ : 7.2

ଗୋଟିଏ ବୟୁକୁ ପୃଥିବୀ ଉପରୁ କିଛି ଉଚ୍ଚତାରୁ ଛାଡ଼ିଦେଲାପରେ ତାହା 0.5 ସେକେଶ ପରେ ତଳେ ପଡ଼ିଲା ।

- (i) ବୟୁଟି କେତେ ବେଗରେ ଭୂମିରେ ପଡ଼ିଲା ?
- (ii) 0.5 ସେକେଶ ମଧ୍ୟରେ ବସ୍ତୁଟିର ହାରାହାରି ବେଗ କେତେ ?
- (iii) ବୟୁଟି କେତେ ଉଚ୍ଚରୁ ଖସି ଭୂମିରେ ପଡ଼ିଥିଲା ? $(g = 10 \hat{n} / 6 \hat{q}^2 \hat{n})$

ଉଉର:

ପତନ ସମୟ, t = 0.5 ସେକେଣ = ½ ସେ ପ୍ରାରୟିକ ପରିବେଗ, u = 0 ମି / ସେ (କାହିଁକି କହିଲ ?) ବୟୁଟିର ତ୍ୱରଣ, g = 10 ମି / ସେ² (ନିମ୍ନଗାମୀ)

(ii) ହାରାହାରି ବେଗ =
$$\frac{u+v}{2}$$

$$= \frac{0 \hat{n} / 6 q + 5 \hat{n} / 6 q}{2}$$

$$\therefore s = x \overline{t}^0 + \frac{1}{2} gt^2$$

$$s = \frac{1}{2} gt^2$$

= ½ × 10 ମି / ସେ² × (0.5 ସେ)²

= ½ × 10 ମି / ସେ² × 0.25 ସେ²

= 1.25 ମିଟର

ଉଦାହରଣ : 7.3

ଗୋଟିଏ ବସ୍ତୁକୁ ଭୂଲୟ ଦିଗରେ ଉପରକୁ ଫିଙ୍ଗିବା ଦାରା ଏହା 10 ମିଟର ଉଚ୍ଚକୁ ଉଠିଲା ।

- ବୟୁଟି କେତେ ପରିବେଗରେ ଉପରକୁ ଫିଙ୍ଗା (i) ହୋଇଥିଲା ?
- ସର୍ବୋଚ୍ଚ ଉଚ୍ଚତାକୁ ଉଠିବା ପାଇଁ ବସ୍ତ୍ରଟିକୁ କେତେ ସମୟ ଲଗିଲା ।

ଉଉର :

ଭୂଲୟ ଦିଗରେ ବୟୁଦ୍ୱାରା ଅତିକାନ୍ତ ଦୂରତା s = 10ମି. । ସର୍ବୋଚ୍ଚ ସ୍ଥାନରେ ପହଞ୍ଚଗଲେ ବସ୍ତୁର ପରିବେଗର ପରିମାଣ ଶୁନ ହୋଇଯାଏ । ତେଣୁ

> ଅନ୍ତିମ ପରିବେଗ v = 0 ମି / ସେ ମାଧାକର୍ଷଣଜନିତ ତୃରଣ g = 9.8 ମି / ସେ²

ସମୀକରଣ (7.11) ରୁ

$$v^2 = u^2 + 2gs$$

 $0 = u^2 + 2 \times (-9.8 \,\widehat{\text{ମ}} \, / \, \text{ସେ}^2) \times 10 \,\widehat{\text{ମ}}.$

(ବୟୁଟି ତଳୁ ଉପରକୁ ଉଠୁଥିବାରୁ ତ୍ୱରଣ ବିଯୁକ୍ତାତ୍ପକ ନିଆଯିବ)

$$\Rightarrow$$
 $u^2 = 2 \times 9.8 \times 10 \ \hat{R}^2 / \ 6Q^2 = 196 \ \hat{R}^2 / \ 6Q^2$

⇒
$$u = \sqrt{196 \ \widehat{n}^2 / \ 69^2}$$

(ii) v = u + at

$$\therefore t = \frac{v - u}{a}$$

a
$$= \frac{0 - 14 \, \hat{\Pi} \, / \, \text{SQ} }{9.8 \, \hat{\Pi} \, / \, \text{SQ}^2} = \frac{14 \, \hat{\Pi} \, / \, \text{SQ}}{9.8 \, \hat{\Pi} \, / \, \text{SQ}^2}$$

$$\Rightarrow t = 1.43 \, \text{SQ}$$

ः ବସ୍ତୁଟିର ପ୍ରାରୟିକ ପରିବେଗ 14ମି / ସେ ଏବଂ ସର୍ବୋଚ୍ଚ ଉଚ୍ଚତାରେ ପହଞ୍ଚବାର ସମୟ 1.43 ସେକେଣ ଅଟେ ।

7.3 ବସ୍ତୁତ୍ୱ (Mass)

କୌଣସି ବସ୍ତ ମଧ୍ୟରେ ଥିବା ପଦାର୍ଥର ପରିମାଣକ୍ ବସ୍ତୁର ବସ୍ତୁତ୍ୱ କୁହାଯାଏ । ବସ୍ତୁର ବସ୍ତୁତ୍ୱ ତା'ର ଜଡ଼ତାର ପରିମାପକ । ଯେଉଁ ବସ୍ତୁର ବସ୍ତୁତ୍ୱ ଯେତେ ଅଧିକ ତାହାର ଜଡ଼ତା ସେତେ ବେଶୀ । ବସ୍ତୁର ବସ୍ତୁତ୍ୱ ତାହାର ଅବସ୍ଥିତି ଉପରେ ନିର୍ଭର କରେ ନାହିଁ । ଅର୍ଥାତ୍ ଗୋଟିଏ ସ୍ଥାନରୁ ଅନ୍ୟସ୍ଥାନକୁ ସ୍ଥାନାନ୍ତରିତ ହେଲେ ବସ୍ତୁର ବସ୍ତୁତ୍ୱର କୌଣସି ପରିବର୍ତ୍ତନ ହୁଏ ନାହିଁ । ବସ୍ତୁର ବସ୍ତୁତ୍ୱ ସବୁ ସ୍ଥାନରେ ସ୍ଥିର ରହେ |

7.4 ଓଜନ (Weight)

ଏକ ବସ୍ତୁ ଉପରେ କ୍ରିୟାଶୀଳ ହେଉଥିବା ପୃଥିବୀର ମାଧାକର୍ଷଣ ବଳକୁ ସେହି ବୟୁର ଓଜନ କୁହାଯାଏ । ଏହାକୁ ସାଧାାରଣତଃ 'W' ସଙ୍କେତ ଦ୍ୱାରା ସ୍ତଚିତ କରାଯାଏ ।

ଓଜନର ଏକକ ବଳର ଏକକ ସହ ସମାନ । ଓଜନ ଏକ ସଦିଶ ରାଶି । ଏହାର ପରିମାଣ ଓ ଦିଗ ଉଭୟ ଥାଏ । ଏହାର ଦିଗ ସବୁବେଳେ ପୃଥିବୀର କେନ୍ଦ୍ର ଆଡ଼କୁ ନିମ୍ନମୁଖୀ ହୋଇଥାଏ । ଯେହେତୁ 'g'ର ମୂଲ୍ୟ ସବୁସ୍ଥାନରେ ସମାନ ନୁହେଁ, ବସ୍ତୁର ଓଜନ ମଧ୍ୟ ସବୁସ୍ଥାନରେ ସ୍ଥିର ନୁହେଁ । ଭିନ୍ନ ଭିନ୍ନ ସ୍ଥାନରେ ବସ୍ତୁର ଓଜନ ଭିନ୍ନ ଭିନ୍ନ ହୋଇଥାଏ ।

7.4.1 ଚନ୍ଦ୍ର ପୃଷରେ ବସ୍ତୁର ଓଜନ

(Weight of an object on the Moon)

ଚନ୍ଦ୍ର ପୃଷରେ ଚନ୍ଦ୍ର ଯେତିକି ମାଧ୍ୟାକର୍ଷଣ ବଳ ପ୍ରୟୋଗ କରି ଗୋଟିଏ ବୟୁକୁ ନିଜ ଆଡ଼କୁ ଆକର୍ଷଣ କରେ ତାହାହିଁ ଚନ୍ଦ୍ରପୃଷରେ ଉକ୍ତ ବୟୁର ଓଳନ ହୋଇଥାଏ । ପୃଥିବୀ ତୁଳନାରେ ଚନ୍ଦ୍ରର ବୟୁତ୍ୱ କମ୍ ହୋଇଥିବାରୁ ଏହା ବୟୁ ଉପରେ କମ୍ ମାଧ୍ୟାକର୍ଷଣ ବଳ ପ୍ରୟୋଗ କରେ ।

ମନେକର m ବୟୁତ୍ୱ ବିଶିଷ୍ଟ ଗୋଟିଏ ବୟୁର ଓଜନ ଚନ୍ଦ୍ରପୃଷ୍ଟରେ W୍ଲ । ଯଦି ଚନ୍ଦ୍ରର ବୟୁତ୍ୱ M୍ଲ ଓ ବ୍ୟାସାର୍ଦ୍ଧ R୍ଲ ହୁଏ ତେବେ ମହାକର୍ଷଣ ବଳର ନିୟମାନୁଯାୟୀ,

$$W_{m} = G \frac{M_{m} \times m}{R_{m}^{2}}$$
(7.13)

ଯଦି ସେହି ସମାନ ବୟୁର ଓଜନ ପୃଥି<mark>ବୀ ପୃଷରେ</mark> W_{\parallel} ହୁଏ ଏବଂ M_{\parallel} ଓ R_{\parallel} ଯଥାକ୍ରମେ ପୃଥିବୀର ବୟୁତ୍ୱ ଓ ବ୍ୟାସାର୍ଦ୍ଧ ହୁଏ ତେବେ

$$W_e = G \frac{M_e \times m}{R_e^2}$$
(7.14)

ସମୀକରଣ (7.14)ରେ

R = 1.74 × 10 ମି ମୂଲ୍ୟ ବସାଇଲେ

$$W_m = G \frac{7.36 \times 10^{22} \ \widehat{\text{ କgI}} \times m}{(1.74 \times 10^6 \, \widehat{\text{fl}})^2}$$

 $= 2.431 \times 10^{10} \text{ G} \times \text{m}$

$$W_e = 1.474 \times 10^{11} \text{ G} \times \text{m}$$

$$\therefore \frac{W_m}{W_e} = \frac{2.431 \times 10^{10}}{1.474 \times 10^{11}} = \frac{1}{6} \text{ (GIQ.)}$$

ତେଣୁ,
$$W_m = \frac{W_e}{6}$$

ଅତଏବ ଚନ୍ଦ୍ର ପୃଷରେ ଗୋଟିଏ ବୟୁର ଓଜନ, ପୃଥିବୀ ପୃଷରେ ସେହି ବୟୁର ଓଜନର ଏକ ଷଷାଂଶ ଅଟେ ।

ଯଦି $g_{_{
m m}}$ = ଚନ୍ଦ୍ରପୃଷ୍ଠରେ ମାଧ୍ୟାକର୍ଷଣଜନିତ ତ୍ୱରଣ

 $g_{_{
m e}} = \eta$ ଥିବୀ ପୃଷରେ ମାଧ୍ୟାକର୍ଷଣଜନିତ ଦ୍ୱରଣ

m = ବସ୍ତୁର ବସ୍ତୁତ୍ୱ

େତ୍ରେ
$$\frac{W_m}{W_e} = \frac{m.g_m}{m.g_e} = \frac{g_m}{g_e} = \frac{1}{6}$$

ତେଣୁ
$$g_m = \frac{g_e}{6}$$

ଉଦାହରଣ : 7.4

୍ବି କୋଟିଏ ବସ୍ତୁର ବସ୍ତୁତ୍ୱ 10 କିଗ୍ରା ହେଲେ ପୃଥିବୀ ପୃଷ୍ଠରେ ଏହାର ଓଜନ କେତେ ?

ଉଉର :

ବୟୁର ବୟୁତ୍ୱ m = 10 କିଗ୍ରା

<mark>ମଧ୍ୟାକ</mark>ର୍ଷଣଜନିତ ତ୍ୱରଣ g = 9.8 ମି / ସେ²

ବୟୁର ଓଜନ W=m×g

= 10 କି.ଗ୍ରା × 9.8 ମି / ସେ²

= 98 କି.ଗ୍ରା.ମି/ ସେ²

= 98 ନିଉଟନ୍

ଉଦାହରଣ: 7.5

ପୃଥିବୀ ପୃଷରେ ଗୋଟିଏ ବସ୍ତୁର ଓଜନ 10 ନିଉଟନ ହେଲେ ଚନ୍ଦ୍ର ପୃଷରେ ଏହାର ଓଜନ କେତେ ?

ଉଉର:

ଚନ୍ଦ୍ରପୃଷରେ ବସ୍ତୁର ଓଜନ

$$=\frac{1}{6}$$
 × ପୃଥିବୀ ପୃଷରେ ସେହି ବୟୁର ଓଜନ ।

$$\Rightarrow$$
 W_m = $\frac{W_e}{6} = \frac{10}{6}$ ନିଉଟନ୍ = 1.67ନିଉଟନ୍

ପ୍ରଶ୍ର :

- (i) ବସ୍ତୁତ୍ୱ ଓ ଓଜନ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ ଦର୍ଶାଅ ।
- (ii) ଚନ୍ଦ୍ର ପୃଷରେ କୌଣସି ବସ୍ତୁର ଓଜନ ପୃଥିବୀ ପୃଷରେ ବସ୍ତୁର ଓଜନର ଏକ ଷଷାଂଶ କାହିଁକି ?

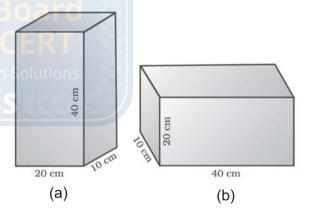
7.5 : ସଂଘାତ ଓ ଚାପ (Thrust and Pressure)

- ଏକ ହାତୃଡ଼ି ଦ୍ୱାରା କାନ୍ଥରେ କଣ୍ଟା ପିଟିବା ବେଳେ ଆମକୁ କଣ୍ଠାର ଚେପ୍ଟା ମୁଞ୍ଜରେ ବଳ ପ୍ରୟୋଗ କରିବାକୁ ପଡ଼େ । ଏହି ବଳ କଣ୍ଠାର ମୁନିଆ ଅଗ୍ରଭାଗରେ କାର୍ଯ୍ୟ କରିଥାଏ ଓ କାନ୍ଥପ୍ରତି ଲୟ ଦିଗରେ କାର୍ଯ୍ୟ କରେ ।
- 2. ବାଲି ଉପରେ ଠିଆ ହେବାଦ୍ୱାରା ଆମ ପାଦ ଦୁଇଟି ବାଲି ଭିତରକୁ ଦବିଯାଏ ମାତ୍ର ବାଲି ଉପରେ ଶୋଇ ପଡ଼ିଲେ ଆମ ଦେହ ବାଲି ଭିତରକୁ ଦବିନଥାଏ । ଦୁଇଟିଯାକ କ୍ଷେତ୍ରରେ ଆମ ଶରୀରର ଓଜନବଳ ବାଲି ଉପରେ ଲୟ ଭାବରେ କାର୍ଯ୍ୟ କରିଥାଏ । କୌଣସି ବୟୁ ଉପରେ ବୟୁର ପୃଷ ପ୍ରତି ଲୟ ଦିଗରେ କାର୍ଯ୍ୟ କରୁଥିବା ବଳକୁ ସଂଘାତ (thrust) କୁହାଯାଏ । ଏହାର ଏକକ, ବଳର ଏକକ ସହ ସମାନ । ବଳ ବା ସଂଘାତରୁ ଚାପ ସୃଷ୍ଟି ହୁଏ ।

ଏକ ପୃଷ୍ପର ପ୍ରତି ଏକକ କ୍ଷେତ୍ରଫଳ ଉପରେ ଲୟ ଭାବରେ କାର୍ଯ୍ୟ କରୁଥିବା ମୋଟ ବଳ ବା ସଂଘାତକୁ ଚାପ କୁହାଯାଏ । ସୁତରାଂ

କିୟା
$$P = \frac{F}{A}$$

ଯେଉଁଠି P= ପୃଷ୍ପତଳ ଉପରେ ଚାପ, F= ପୃଷ୍ପତଳ ଉପରେ ସଂଘାତ ଓ A= ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ । ଚାପର ଏକକ ହେଉଛି ନିଉଟନ / ମି 2 । ବୈଜ୍ଞାନିକ ପାଶ୍ୱକାଲ (Pascal)ଙ୍କ ସମ୍ମାନାର୍ଥେ ଏହି ଏକକକୁ ପାଶକାଲ୍ (Pa) ମଧ୍ୟ କୁହାଯାଏ ।


1 ପାଶ୍ୱକାଲ = 1ନିଉଟନ / ମି²

ସଂକେତରେ 1Pa = 1 N / m²

- ବୟୁର ପୃଷ ସହ ସଂସ୍କର୍ଶରେ ଆସି ପୃଷ ପ୍ରତି ଲୟ ଭାବରେ କାର୍ଯ୍ୟ କରୁଥିବା ମୋଟ ବଳକୁ ସଂଘାତ କୁହାଯାଏ ।
- ଚାପ ହେଉଛି ସଂଘାତ ଓ କ୍ଷେତ୍ରଫଳର ଅନୁପାତ ।
- ସଂଘାତର ଏକକ ହେଉଛି ନିଉଟନ (N) ଏବଂ ଚାପର ଏକକ ହେଉଛି ନିଉଟନ/ମି² (Nm-²) ବା ପାଶ୍ୱକାଲ (Pa)

ଉଦାହରଣ : 7.6

ଗୋଟିଏ ଆୟତଘନାକାର କାଠଖଣ୍ଡର ଦୈର୍ଘ୍ୟ 40 ସେ.ମି., ପ୍ରସ୍ଥ 20 ସେ.ମି. ଓ ଉଚ୍ଚତା 10ସେମି. । ଏହାକୁ ଟେବୁଲ ଉପରେ ଚିତ୍ରରେ ଦର୍ଶାଯାଇଥିବା ପରି ରଖ ।

ଚିତ୍ର 7.3

- (i) (a) ଚିତ୍ରରେ କାଠଖଣ୍ଡର ଦୈର୍ଘ୍ୟ ଟେବୂଲ ପ୍ରତି ଲୟ ହୋଇ ରହିଛି ।
- (ii) (b) ଚିତ୍ରରେ କାଠଖଣ୍ଡର ଉଚ୍ଚତା ଟେବୂଲ ପ୍ରତି ଲୟ ହୋଇ ରହିଛି ।

ଯଦି କାଠଖଣ୍ଡର ବସ୍ତୁତ୍ୱ 5 କିଗ୍ରା ହୁଏ, ତେବେ ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ କାଠଖଣ୍ଡ ଟେବୂଲ ଉପରେ କେତେ ଚାପ ପକେଇବ ?

ଉତ୍ତର :

କାଠଖଣ୍ଡର ବୟୂତ୍ୱ = 5 କିଗ୍ରା ଏହାର ଦୈର୍ଘ୍ୟ, ପ୍ରସ୍ଥ ଓ ଉଚ୍ଚତା ଯଥାକ୍ରମେ 40 ସେମି, 20 ସେମି, ଓ 10 ସେମି ଅଟେ । କାଠଖଣ୍ଡ ଟେବୂଲ ଉପରେ ପ୍ରୟୋଗ କରୁଥିବା ବଳ କାଠଖଣ୍ଡର ଓଜନ (w) ସହ ସମାନ ।

- ∴ W = mg = 5କିଗା × 9.8 ମି / ସେ²
 - = 49ନିଉଟନ୍
- (i) ପ୍ରଥମ ଚିତ୍ର (a)ରେ ଟେବୁଲର ସଂୟର୍ଶରେ ରହିଥିବା ଆୟତଘନର ପାର୍ଶ୍ୱର କ୍ଷେତ୍ରଫଳ
 - = 20 × 10 ବର୍ଗ ସେମି
 - = 200 ବର୍ଗ ସେମି
 - = 0.02 ବର୍ଗମି (1ବର୍ଗମି= 10⁴ବର୍ଗସେମି)
- : ଟେବୁଲ ଉପରେ ପଡୁଥିବା

= ସେଲ୍ଲ (ସଂଘାତ = ଓଜନ ବଳ)

- = 2450 ନିଉଟନ / ମି²
- = 2450 ପାଶକାଲ୍
- (ii) ଦ୍ୱିତୀୟ ଚିତ୍ର (b)ରେ ଟେବୁଲର ସଂୟର୍ଶରେ ଲାଗିଥିବା ପାର୍ଶ୍ୱର କ୍ଷେତ୍ରଫଳ
 - = 40 × 10 ବର୍ଗ ସେମି
 - = 400 ବର୍ଗ ସେମି
 - = 0.04 ବର୍ଗମି
- : ଟେବୁଲ ଉପରେ ପଡୁଥିବା

.. ______

- = $\frac{49 ନିଉଟନ}{0.04 ବ ମି$
- = 1225 ନିଉଟନ / ମି²
- = 1225 ପାଶକାଲ୍

ଏଥିରୁ ଆମେ ଜାଣିଲେ ଯେ, ବଳ ଯେଉଁ କ୍ଷେତ୍ର ଉପରେ କାର୍ଯ୍ୟ କରେ ତାହାର କ୍ଷେତ୍ରଫଳ କମ୍ ହେଲେ ପ୍ରୟୋଗକାରୀ ବଳର ପ୍ରଭାବ ଅଧିକ ହୁଏ ଏବଂ କ୍ଷେତ୍ରଫଳ ଅଧିକ ହେଲେ, ବଳର ପ୍ରଭାବ କମ୍ ହୋଇଥାଏ । ଏହି କାରଣରୁ କଣ୍ଠାର ଅଗ୍ରଭାଗ ସରୁ ଓ ଛୁରୀର ଧାର ତୀକ୍ଷ୍ଣ ହୋଇଥାଏ ଏବଂ କୋଠାଘରର ମୂଳଦୂଆକୁ ପ୍ରଶୟ କରାଯାଇଥାଏ । କାହିଁକି ଏପରି କରାଯାଏ କହିଲ ।

7.5.1 ତରଳ ପଦାର୍ଥରେ ଚାପ (Pressure in Fluids)

କଠିନ ପଦାର୍ଥପରି ତରଳ ଓ ଗ୍ୟାସ୍ ମଧ୍ୟ ଚାପ ପକାଇଥାଏ । ଏହା ଯେଉଁ ପାତ୍ରରେ ରହେ, ସେହି ପାତ୍ରର ତଳେ ଓ କାନ୍ତ ଉପରେ ଚାପ ପକାଏ । ତରଳ ପଦାର୍ଥ ମଧ୍ୟରେ ଏହି ଚାପ ଗୋଟିଏ ବିନ୍ଦୁର ସବୁଦିଗରେ ସମାନ ଭାବେ ପ୍ରଯୁକ୍ତ ହୁଏ ।

7.5.2 ପୁବତା (Bouyancy)

କୂଅରୁ ପାଣି କାଡ଼ିଲାବେଳେ ଆମେ ଅନୁଭବ କରିଥାଉ ଯେ ଜଳପୂର୍ତ୍ତ ବାଲ୍ଟି ପାଣିରେ ବୁଡ଼ିରହିଲା ବେଳେ ହାଲୁକା ଲାଗେ ଓ ପାଣି ଉପରକୁ ଆସିଲେ ଅଧିକ ଓଜନ ଲାଗେ । ପୋଖରୀରେ ପହଁରିଲା ବେଳେ ଆମେ ନିଜକୁ ହାଲୁକା ଅନୁଭବ କରିବା କଥା ସମୟେ ଜାଣିଛେଁ । ତୁମେ କେବେ ଭାବିଛ କି, ଲୁହାରେ ତିଆରି ଜାହାଜ କିପରି ସମୁଦ୍ର ଜଳରେ ଭାସେ କିନ୍ତୁ ଗୋଟିଏ ଲୁହା ଖଣ୍ଡକୁ ପାଣିରେ ପକାଇଲେ ତାହା ସଙ୍ଗେ ସଙ୍ଗେ ବୁଡ଼ିଯାଏ । ଏହିସବୁ ତଥ୍ୟକୁ ବୁଝିବାକୁ ହେଲେ ଆମକୁ ପ୍ଲବତା କ'ଣ ଜାଣିବାକୁ ହେବ । ଏବେ ଆସ ନିମୁଲିଖିତ ଆଲୋଚନାରୁ ପୁବତା କ'ଣ ବୁଝିବା ।

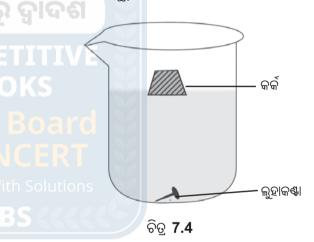
ତୁମ ପାଇଁ କାମ : 7.3

ଗୋଟିଏ ଖାଲି ପ୍ଲାଷ୍ଟିକ ବୋଡଲର ଠିପି ବନ୍ଦକରି ଏକ ପାଣିଭର୍ତ୍ତି ବାଲ୍ଟିରେ ରଖ । ବୋଡଲଟି ପାଣିରେ ଭାସିବ । ବୋଡଲଟିକୁ ପାଣି ଭିଡରକୁ ଠେଲିବାକୁ ଟେଷ୍ଟାକର । ଡୁମେ ଏକ ଉର୍ଦ୍ଧ୍ୱବଳ ଅନୁଭବ କରିବ ଯାହା ବୋଡଲଟିକୁ ପାଣିରେ ଠେଲି ଡଳକୁ ପୂରାଇବା କାର୍ଯ୍ୟରେ ବାଧା ଦିଏ । ବୋଡଲଟିକୁ ଜଳପୃଷରୁ ଯେତେ ଅଧିକ ଭିଡରକୁ ଠେଲିବ, ବୋଡଲ ଉପରେ ଜଳ ସେତେ ଅଧିକ

ଊର୍ଦ୍ଧ୍ୱବଳ ପ୍ରୟୋଗ କରିବ । ବୋଡଲଟିକୁ ପାଣିରେ ସମ୍ପୂର୍ଣ ବୁଡ଼ାଇ ଛାଡ଼ିଦେଲେ, ଏହା ଆପେ ଆପେ ଉପରକୁ ଉଠିଆସିବ ।

ଏଠାରେ କେତୋଟି ପ୍ରଶ୍ନ ମନକୁ ଆସେ, ଯେପରିକି

- (i) ପୃଥିବୀର ମାଧ୍ୟାକର୍ଷଣ ବଳ ବୋତଲ ଉପରେ କାର୍ଯ୍ୟକରେ କି ?
- (ii) ଯଦି କରେ, ତେବେ ବୋଡଲଟିକୁ ଜଳଭିତରେ ତଳକୁ ବୁଡ଼ାଇ ଛାଡ଼ିଦେଲେ ତାହା ସେହି ସ୍ଥାନରେ ରହିବା ପରିବର୍ତ୍ତେ ଉପରକୁ ଉଠିଆସେ କାହିଁକି ?
- (iii) ବୋତଲଟିକୁ କିପରି ପାଣିରେ ବୁଡ଼ାଯାଇ ପାରିବ ? ପୃଥ୍ବୀର ମାଧ୍ୟାକର୍ଷଣ ବଳ ବୋତଲଟିକୁ ତଳ ଆଡ଼କୁ ଟାଣେ । ମାତ୍ର ଜଳ ବୋତଲ ଉପରେ ଏକ ଉର୍ଦ୍ଧ୍ୱବଳ ପ୍ରୟୋଗ କରେ ଯାହା ଫଳରେ ବୋତଲଟି ଉପରକୁ ଠେଲିହୁଏ । ଯେତେବେଳେ ଜଳ ଭିତରେ ଏହି ଉର୍ଦ୍ଧ୍ୱବଳର ପରିମାଣ ପୃଥ୍ବୀର ମାଧ୍ୟାକର୍ଷଣ ବଳର ପରିମାଣ ଅର୍ଥାତ୍ ବୋତଲଟିର ଓଜନଠାରୁ ଅଧିକ ହୁଏ, ବୋତଲଟି ଉପରକୁ ଉଠିଆସେ । ବୋତଲଟି ବୁଡ଼ିଯିବା ପାଇଁ ବୋତଲର ଓଜନ ବୋତଲ ଉପରେ କ୍ରିୟାଶୀଳ ଉର୍ଦ୍ଧ୍ୱବଳର ପରିମାଣଠାରୁ ଅଧିକ ହେବା ଆବଶ୍ୟକ । ବୋତଲ ଉପରେ ଏକ ଅତିରିକ୍ତ ନିମ୍ନମୁଖୀ ବାହ୍ୟବଳ ପ୍ରୟୋଗ କଲେ ଯାଇ ବୋତଲକୁ ଜଳ ମଧ୍ୟରେ ବୁଡ଼ାଇ ରଖିବା ସୟବ ହେବ । ଏହି ଅତିରିକ୍ତ ନିମ୍ନମୁଖୀ ବାହ୍ୟବଳର ପରିମାଣ ଉର୍ଦ୍ଧ୍ୱବଳ ଓ ବୋତଲର ଓଜନର ପରମାଣର ଅନ୍ତର ସହ ସମାନ ବା ଅଧିକ ହେବା ଆବଶ୍ୟକ ।


ଏଠାରେ ଜଳ, ବୋତଲ ଉପରେ ଯେଉଁ ଊର୍ଦ୍ଧ୍ୱବଳ ପ୍ରୟୋଗ କଲା ତାହାକୁ ପ୍ଲବନ ବଳ କୁହାଯାଏ । ପ୍ଲବନ ବଳ ତରଳ ପଦାର୍ଥରେ ବୁଡ଼ିଥିବା ପ୍ରତ୍ୟେକ ବୟୁ ଉପରେ କାର୍ଯ୍ୟ କରିଥାଏ । ଏହି ବଳର ପରିମାଣ ତରଳପଦାର୍ଥର ସାନ୍ଦ୍ରତା ଉପରେ ନିର୍ଭର କରେ ।

କୌଣସି ବସ୍ତୁ ଜଳ ମଧ୍ୟରେ ବୁଡ଼ିଲେ ସେହି ବସ୍ତୁ ଉପରେ କ୍ରିୟାଶୀଳ ଉର୍ଦ୍ଧ୍ୱମୁଖୀ ପ୍ଲବନ ବଳର ପରିମାଣ ଅପସାରିତ ଜଳର ଓଜନର ପରିମାଣ ସହିତ ସମାନ ।

7.5.3 ଜଳରେ ବୟୁଟିଏ ବୁଡ଼େ ବା ଭାସେ କାହିଁକି ? (Why Objects Float or Sink When Placed on the Surface of Water)

ଏହି ପ୍ରଶ୍ନର ଉତ୍ତର ପାଇବା ପାଇଁ ଏକ ଛୋଟ ପରୀକ୍ଷାଟିଏ କରିବା ।

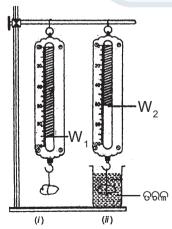
ଗୋଟିଏ ବିକରରେ ପାଣି ଭର୍ତ୍ତିକର । ପାଣିର ପୃଷରେ ଏକ ଲୁହାକଣ୍ଟା ରଖ । କ'ଣ ହେଉଛି ଲକ୍ଷ୍ୟ କର । କଣ୍ଟାଟିଏ ପାଣିରେ ବୁଡ଼ିଯିବ । ଏଠାରେ କଣ୍ଟା ଉପରେ ଦୁଇଟି ବଳ କାର୍ଯ୍ୟ କରେ । ପ୍ରଥମଟି ପୃଥିବୀର ମାଧ୍ୟାକର୍ଷଣ ବଳ ବା କଣ୍ଟାର ଓଜନ ଓ ଦ୍ୱିତୀୟଟି ପ୍ଲବନ ବଳ । ଏହି ଦୁଇଟି ବିପରୀତମୁଖୀ ବଳ ମଧ୍ୟରୁ ପ୍ରଥମଟିର ଅର୍ଥାତ୍ ମାଧ୍ୟାକର୍ଷଣବଳ ବା ଓଜନର ପରିମାଣ ପ୍ଲବନ ବଳଠାରୁ ଅଧିକ ହେବାରୁ କଣ୍ଟାଟି ପାଣିରେ ବୃଡ଼ିଗଲା ।

ତୁମ ପାଇଁ କାମ : 7.4

ଗୋଟିଏ ଜଳପୂର୍ଣ୍ଣ ବିକରରେ ସମାନ ବସ୍ତୁତ୍ୱ ବିଶିଷ୍ଟ ଏକ ଲୁହାକଣ୍ଟା ଓ କର୍କକୁ ରଖ । କ'ଶ ହେଉଛି ଲକ୍ଷ୍ୟକର । ଲୁହାକଣ୍ଟାଟି ବୁଡ଼ିଯିବ ମାତ୍ର କର୍କଟି ପାଣିରେ ଭାସିବ । ଏହା ବସ୍ତୁ ଦୁଇଟିର ସାନ୍ଦ୍ରତାରେ ଥିବା ପାର୍ଥକ୍ୟ ଯୋଗୁଁ ଘଟେ । କର୍କର ସାନ୍ଦ୍ରତା ଜଳର ସାନ୍ଦ୍ରତାଠାରୁ କମ୍ । ତେଣୁ କର୍କ କ୍ଷେତ୍ରରେ ପ୍ଲବନ ବଳର ପରିମାଣ କର୍କର ଓଜନଠାରୁ ଅଧିକ । ତେଣୁ ଏହା ଜଳପୃଷ୍ଠରେ ଭାସେ ।

ମାତ୍ର ଲୁହାକଣ୍ଠାର ସାନ୍ଦ୍ରତା ଜଳଠାରୁ ଅଧିକ । ତେଣୁ ଏହା ଉପରେ ପ୍ରଯୁକ୍ତ ପ୍ଲବନ ବଳର ପରିମାଣ ଲୁହାକଣ୍ଠାର ଓଜନଠାରୁ କମ୍ ଯାହା ଫଳରେ କି ଏହା ବୁଡ଼ିଯାଏ । ଏଥିରୁ ଆମେ ଜାଣିଲେ ଯେ, ଯେଉଁ ବୟୁର ସାନ୍ଦ୍ରତା ଜଳର ସାନ୍ଦ୍ରତାଠାରୁ କମ୍ ତାହା ଜଳରେ ଭାସେ ଓ ଯାହାର ସାନ୍ଦ୍ରତା ଜଳର ସାନ୍ଦ୍ରତା ଠାରୁ ଅଧିକ ତାହା ଜଳରେ ବୁଡ଼ିଯାଏ ।

ପ୍ରଶ୍ନ :


- (i) ମୋଟା ଫିତା ଥିବା ବ୍ୟାଗ ଅପେକ୍ଷା ପତଳା ଫିତାଥିବା ବ୍ୟାଗକୁ କାନ୍ଧରେ ବୋହିବା କଷ୍ଟକର କାହିଁକି ?
- (ii) ପୁବତା କ'ଣ ?
- (iii) ଗୋଟିଏ ବୟୁକୁ ଜଳପୃଷ୍ଠରେ ରଖିଲେ ତାହା ଜଳରେ କେତେବେଳେ ବୁଡ଼ିଯାଏ ଓ କେତେବେଳେ ଭାସେ ?

7.6 ଆର୍କିମିଡ଼ିସ୍ଙ୍କ ସୂତ୍ର (Archimede's Principle)

ପ୍ରଥମ ଟୁ

ତୁମ ପାଇଁ କାମ : 7.5

ଗୋଟିଏ କମାନୀ ନିକିତିରେ ନିଦା ଓଜନିଆ ବୟୁଟିଏ ଝୁଲାଇ କୌଣସି ତରଳ (fluid)ରେ ବୟୁଟିକୁ ଆଂଶିକ ଭାବେ ବୁଡ଼ାଇବା ମାତ୍ରେ ନିକିତିର ସୂଚକ ଉପରକୁ ଠେଲି ହେବା ଲକ୍ଷ୍ୟ କରାଯାଏ । ବୟୁଟି ଉପରେ ଉର୍ଦ୍ଧ୍ୱମୂଖୀ ପ୍ଲବନ ବଳର ପ୍ରଭାବ ହେତୁ ତା'ର ଓଜନ ହ୍ରାସ ପାଏ ଏବଂ ସୂଚକ ଉପରକୁ ଉଠେ । ବୟୁଟିକୁ ଆଉ ଅଧିକ ବୁଡ଼ାଇଲେ, ପ୍ଲବନ ବଳ

ଚିତ୍ର 7.5 ତରଳରେ ବୟୁର ଓଜନ ହ୍ରାସ

ଆନୁପାତିକ ଭାବେ ବଢ଼ିବ ଏବଂ ସୂଚକଟି ଆହୁରି ଉପରକୁ ଉଠିବ, କାରଣ ବୟୁର ଓଜନ ଆହୁରି କମିଯାଏ । ବୟୁଟି ସଂପୂର୍ଣ୍ଣ ବୁଡ଼ିଗଲେ ପୁବନ ବଳ ସର୍ବାଧିକ ହୁଏ ଏବଂ ବସ୍ତୁଟି ଅତ୍ୟଧିକ ହାଲୁକା ଜଣାପଡ଼େ ଓ ସୂଚକ ସବୁଠାରୁ ଉଚ୍ଚସ୍ଥାନରେ ରୁହେ । ଏହାପରେ ତରଳ ଭିତରେ ବସ୍ତୁଟିକୁ ଅଧିକ ବୁଡ଼ାଇଲେ ମଧ୍ୟ ପୁବନ ବଳ ଆଉ ବୃଦ୍ଧି ପାଇନଥାଏ । ତେଣୁ ସୂଚକର ସ୍ଥାନ ଅପରିବର୍ତ୍ତିତ ରହେ । ସୁତରାଂ ବସ୍ତୁ ଉପରେ ତରଳ ପ୍ରୟୋଗ କରୁଥିବା ପୁବନ ବଳ ତରଳ ମଧ୍ୟରେ ବସ୍ତୁର ବୁଡ଼ିରହିଥିବା ଅଂଶର ଆୟତନ ଉପରେ ନିର୍ଭରଶୀଳ । ବୁଡ଼ିବା ଅଂଶର ଆୟତନ ବଡ଼ିଲେ, ପୁବନ ବଳ ବଢେ । ଗ୍ରୀକ୍ ଦାର୍ଶନିକ ତଥା ଗାଣିତିକ ଆର୍କିମିଡ଼ିସ୍ (287-212ଖ୍ରୀ.ପୂ) ପ୍ରଥମେ ଏହା ଆବିଷାର କରିଥିଲେ । ପ୍ରତ୍ୟେକ ବସ୍ତୁର ନିଳସ୍ୱ ପ୍ରକୃତ ଓଳନ ଅଛି।

ଗୋଟିଏ ବସ୍ତୁ ଏକ ତରଳ ମଧ୍ୟରେ ବୁଡ଼ିଲେ ତାହାର ଓଜନ କିଛି କମିଗଲାପରି ଜଣାପଡ଼େ । ଏହି ଓଜନ ହ୍ରାସକୁ ଆଭାସୀ (virtual) ହ୍ରାସ କୁହାଯାଏ । କାରଣ ବସ୍ତୁଟି ତରଳରୁ ବାହାରି ଆସିଲେ ତା'ର ଓଜନ ପୁଣି ବଢ଼ିଯାଏ ଯାହାକୁ ବସ୍ତୁର ପ୍ରକୃତ ଓଜନ କୁହାଯାଏ ।

ଗୋଟିଏ ବସ୍ତୁକୁ କୌଣସି ଏକ ତରଳରେ ବୃଡ଼ାଇଲେ, ତାହା ବୃଡ଼ିଥିବା ଅଂଶର ଆୟତନ ସହ ସମାନ ଆୟତନର ତରଳ ଅପସାରିତ କରିଥାଏ । ବସ୍ତୁଦ୍ୱାରା ଅପସାରିତ ତରଳର ଓଳନ ଏବଂ ବୃଡ଼ିଥିବା ବେଳେ ତାହାର ଓଳନର ଆଭାସୀ ହ୍ରାସ (apparent loss) ମଧ୍ୟରେ ଥିବା ସମ୍ପର୍କ ବିଷୟରେ ଆର୍କିମିଡ଼ିସ୍ ଅନୁଧାନ କରି ଯେଉଁ ସିଦ୍ଧାନ୍ତରେ ଉପନୀତ ହୋଇଥିଲେ ତାହା ତାଙ୍କ ନାମ ଅନୁସାରେ ଆର୍କିମିଡ଼ିସ୍ଙ୍କ ସୂତ୍ର ନାମରେ ପରିଚିତ । ସୂତ୍ରଟି ହେଲା, କୌଣସି ଏକ ତରଳରେ କୌଣସି ଏକ ବସ୍ତୁକୁ ସମ୍ପୂର୍ଣ୍ଣ ବା ଆଂଶିକ ଭାବରେ ବୃଡ଼ାଇଲେ ବସ୍ତୁଟିର ଓଳନ ହ୍ରାସ ପାଏ । ବସ୍ତୁର ଓଳନର ଏହି ଆଭାସୀ ହ୍ରାସ ବସ୍ତୁଦ୍ୱାରା ଅପସାରିତ ତରଳର ଓଳନ ସହ ସମାନ ହୋଇଥାଏ ।

ଆର୍କିମିଡ଼ିସ୍ଙ୍କ ସୂତ୍ର ପ୍ରୟୋଗ କରି ବସ୍ତୁର ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା ନିର୍ଣ୍ଣୟ କରାଯାଏ । ଅଧିକାଂଶ ଭାସମାନ ଅନୁପ୍ରଯୁକ୍ତିର (appliance) ନିର୍ମାଣରେ ଏହି ସୂତ୍ର ବ୍ୟବହୃତ ହୋଇଥାଏ । ଜାହାଜ, ବୁଡ଼ାଜାହାଜ, ଡଙ୍ଗାର ନିର୍ମାଣ କୌଶଳ ଏହି ସୂତ୍ର ଉପରେ ପର୍ଯ୍ୟବେସିତ ହୋଇଥାଏ । ଲାକ୍ଟୋମିଟର ଓ ହାଇଡ୍ରୋମିଟରର କାର୍ଯ୍ୟ ମଧ୍ୟ ଏହି ତଥ୍ୟ ଉପରେ ପର୍ଯ୍ୟବେସିତ ।

7.7 ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା (Relative Density)

ଏକ ବସ୍ତୁର ପ୍ରତି ଏକକ ଆୟତନରେ ଥିବା ବସ୍ତୁତ୍ୱକୁ ବସ୍ତୁର ସାନ୍ଦ୍ରତା କୁହାଯାଏ ।

ସାନ୍ଦ୍ରତାର ଏକକ କିଗ୍ରା / ମି³ । ସାନ୍ଦ୍ରତା ପ୍ରତ୍ୟେକ ବଞ୍ଚୁର ଏକ ସ୍ୱତନ୍ତ ଗୁଣ । ଭିନ୍ନ ଭିନ୍ନ ବଞ୍ଚୁର ସାନ୍ଦ୍ରତା ଭିନ୍ନ ଭିନ୍ନ, ଯେପରିକି ସୁନାର ସାନ୍ଦ୍ରତା 19300 କିଗ୍ରା / ମି³ ମାତ୍ର ଜଳର ସାନ୍ଦ୍ରତା 1000 କିଗ୍ରା / ମି³ । ଗୋଟିଏ ବଞ୍ଚୁର ସାନ୍ଦ୍ରତାରୁ ତା'ର ଶୁଦ୍ଧତା (purity) ଜଣାପଡ଼େ । ବଞ୍ଚୁରେ ଅନ୍ୟ କିଛି ପଦାର୍ଥ ମିଶିଥିଲେ ବଞ୍ଚୁର ସାନ୍ଦ୍ରତାରେ ପରିବର୍ତ୍ତନ ଆସେ ।

ବହୁସମୟରେ ଗୋଟିଏ ବଞୁର ସାନ୍ଦ୍ରତାକୁ ଜଳର ସାନ୍ଦ୍ରତା ସହ ତୁଳନାକରି ପ୍ରକାଶ କରାଯାଏ । ଗୋଟିଏ ବୟୁର ସାନ୍ଦ୍ରତା ଓ ଜଳର ସାନ୍ଦ୍ରତାର ଅନୁପାତକୁ ସେହି ବୟୁର ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା କୁହାଯାଏ । ଏହାର କୌଣସି ଏକକ ନାହିଁ । (କାହିଁକି ?)

ः କୌଣସି ବସ୍ତୁର ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା

ଉଦାହରଣ: 7.7

ରୂପାର ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା 10.8 । ଜଳର ସାନ୍ଦ୍ରତା 1000 କି.ଗ୍ରା/ମି³ । ତେବେ S.I ଏକକରେ ରୂପାର ସାନ୍ଦ୍ରତା କେତେ କଳନା କର ?

ଉଉର :

ରୂପାର ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା = 10.8

ଆମେ କ'ଣ ଶିଖିଲେ :

- ମହାକର୍ଷଣର ନିୟମାନୁସାରେ ଯେ କୌଣସି ଦୁଇଟିବୟୁ ମଧ୍ୟରେ ଥିବା ବୟୁତ୍ୱ ଜନିତ ଆକର୍ଷଣ ବଳ, ବୟୁ ଦ୍ୱୟର ବୟୁତ୍ୱର ଗୁଣଫଳ ସହ ସମାନୁପାତୀ ଏବଂ ସେମାନଙ୍କ ମଧ୍ୟରେ ଥିବା ଦୂରତାର ବର୍ଗ ସହ ପ୍ରିଲୋମାନୁପାତୀ ।
- ମହାକର୍ଷଣର ନିୟମ ବିଶ୍ୱର ପ୍ରତ୍ୟେକ ବୟୁପାଇଁ
 ପ୍ରଯୁଜ୍ୟ ଅଟେ । ମହାକର୍ଷଣ ବଳ ଗୋଟିଏ ଦୁର୍ବଳ
 ବଳ (ପ୍ରକୃତିର ଅନ୍ୟ ବଳମାନଙ୍କ ତୁଳନାରେ) ।
- ପୃଥ୍ବୀର ମହାକର୍ଷଣ ବଳକୁ 'ମାଧାକର୍ଷଣ ବଳ' କୁହାଯାଏ ।
- G ଏକ ସାର୍ବଜନୀନ ମହାକର୍ଷଣୀୟ ସ୍ଥିରାଙ୍କ ।
- ମେରୁଠାରୁ ବିଷୁବବୃତ୍ତ ଆଡ଼କୁ ଗଲେ ପୃଥିବୀର ମାଧାକର୍ଷଣ ବଳ ହ୍ରାସ ପାଏ । ଭୂପୃଷ୍ଠ ଉପରେ ଉଚ୍ଚତା ବୃଦ୍ଧିସହ ଏହାର ପରିମାଣ ମଧ୍ୟ ହ୍ରାସ ପାଏ ।
- ପୃଥ୍ବୀ ଯେଉଁ ମାଧାକର୍ଷଣ ବଳ ପ୍ରୟୋଗକରି ଗୋଟିଏ ବୟୁକୁ ନିଜଆଡ଼କୁ ଆକର୍ଷଣ କରେ, ତାହାକୁ ଉକ୍ତ ବୟୁର ଓଜନ କୁହାଯାଏ ।
- ବୟୂର ବୟୂତ୍ୱ ଓ ମାଧାକର୍ଷଣଜନିତ ତ୍ୱରଣର ଗୁଣଫଳକୁ ବୟୁର ଓଜନ କୁହାଯାଏ ।
- ସ୍ଥାନ ଅନୁସାରେ ବୟୁର ଓଳନର ପରିମାଣ ପରିବର୍ତ୍ତିତ
 ହୁଏ ମାତ୍ର ତାହାର ବୟୁତ୍ୱ ସ୍ଥିର ରହେ ।
- ତରଳରେ ବୁଡ଼ିଥିବା ପ୍ରତ୍ୟେକ ବୟୁ ଉପରେ ତରଳ ପଦାର୍ଥ ଏକ ଉର୍ଦ୍ଧ୍ୱବଳ ପ୍ରୟୋଗ କରେ । ଏହାକୁ ପ୍ଲବନ ବଳ କୁହାଯାଏ ।
- ତରଳରେ ବୁଡ଼ିଥିବା ବୟୁର ସାନ୍ଦ୍ରତା ତରଳରେ ସାନ୍ଦ୍ରତାଠାରୁ ଅଧିକ ହେଲେ ବୟୁଟି ବୁଡ଼ିଯାଏ ଏବଂ କମ୍ ହେଲେ ତାହା ଭାସେ ।

ପ୍ରଶ୍ନାବଳୀ

- 1. ଦୁଇଟି ବୟୁ ମଧ୍ୟରେ ଥିବା ଦୂରତାକୁ ଅଧା କରିଦେଲେ ସେମାନଙ୍କ ମଧ୍ୟରେ କାର୍ଯ୍ୟକରୁଥିବା ମହାକର୍ଷଣ ବଳର ପରିମାଣରେ କି ପରିବର୍ତ୍ତନ ହୁଏ ?
- 2. ପୃଥିବୀ ଓ ପୃଥିବୀ ପୃଷରେ ଥିବା ଏକ କି.ଗ୍ରା ବସ୍ତୁତ୍ୱ ବିଶିଷ୍ଟ ବସ୍ତୁ ମଧ୍ୟରେ ଥିବା ମହାକର୍ଷଣ ବଳର ପରିମାଣ କେତେ ? (ପୃଥିବୀର ବସ୍ତୁତ୍ୱ 6×10²⁴ କିଗ୍ରା ଓ ବ୍ୟାସାର୍ଦ୍ଧ 6.4×10° ମି)
- 3. ପୃଥିବୀ ଚନ୍ଦ୍ରକୁ ଯେତିକି ବଳରେ ଆକର୍ଷଣ କରେ ଚନ୍ଦ୍ର ପୃଥିବୀକୁ ସେତିକି ବଳରେ ଆକର୍ଷଣ କରେ କି ? କାରଣ ସହ ବୁଝାଅ ?
- 4. ଯଦି ଚନ୍ଦ୍ର ପୃଥିବୀକୁ ଆକର୍ଷଣ କରେ ତେବେ ପୃଥିବୀ ଚନ୍ଦ୍ରଆଡ଼କୁ ଗତିକରେ ନାହିଁ କାହିଁକି ?
- 5. ଦୁଇଟି ବୟୁ ମଧ୍ୟରେ ଥିବା ଆକର୍ଷଣ ବଳ ନିମ୍ନଲିଖିତ ପରିସ୍ଥିତିରେ କିପରି ପରିବର୍ତ୍ତିତ ହେବ ?
 - (i) ଯଦି ଗୋଟିଏ ବୟୁର ବୟୁତ୍ୱ ଦ୍ୱିଗୁଣିତ ହୁଏ ।
 - (ii) ଯଦି ବୟୁଦ୍ୱୟ ମଧ୍ୟରେ ଥିବା ଦୂରତା ତ୍ରିଗୁଣିତ ହୁଏ ।
 - (iii) ଉଭୟ ବସୁର ବସୂତ୍ୱ ଦ୍ୱିଗୁଣି<mark>ତ ହୁଏ</mark> ।
 - (iv) ଉଭୟ ବୟୁର ବୟୁତ୍ୱ ଦ୍ୱିଗୁଣି<mark>ତ ହେବ ଓ ସେମାନଙ୍କ ମଧ୍ୟରେ ଥି</mark>ବା ଦୂରତା ମଧ୍ୟ <mark>ଦ୍ୱିଗୁଣିତ ହେବ ।</mark>
- 6. ମହାକର୍ଷିଣ ବଳର ନିୟମର ଗୁରୁତ୍ୱ କ'ଶ^{୍ୱ} ? oks With Solutions
- 7. ମୁକ୍ତ ପତନରେ ବସ୍ତୁର ତ୍ୱରଣ କେତେ ?
- 8. ପୃଥିବୀ ଓ ଯେ କୌଣସି ବସ୍ତୁ ମଧ୍ୟରେ ଥିବା ମହାକର୍ଷଣ ବଳକୁ କ'ଣ କୁହାଯାଏ ?
- 9. ରାମ ଦକ୍ଷିଣମେରୁଠାରେ 5ଗ୍ରାମ ଓଜନର ସୁନା କିଶିଲା । ବିଷୁବବୃତ୍ତଠାରେ ସେ ସେହି ସୁନା ତା ସାଙ୍ଗକୁ ଦେଲା । ସାଙ୍ଗଜଣକ ସ୍ୱନାର ଓଜନ ସହ ସମ୍ମତ ହେବକି ? ତ୍ମ ଉତ୍ତରର ଯଥାର୍ଥତା ପତିପାଦନ କର ।
- 10. କାଗଜ ଗୁଳା ଅପେକ୍ଷା ଖଣ୍ଡିଏ ଫର୍ଦ୍ଦ କାଗଜ ଡେରିରେ ତଳକୁ ପଡ଼େ କାହିଁକି ?
- 11. 100 କିଗ୍ରା ବୟୂତ୍ୱ ବିଶିଷ୍ଟ ଏକ ବୟୁର ଓଜନ ପୂଥିବୀ ଓ ଚନ୍ଦ୍ର ପୃଷ୍ଠରେ କେତେ ହେବ କଳନା କର ।
- 12. ତୁମର ବୟୁତ୍ୱ କେତେ ? ଚନ୍ଦ୍ରରେ ତୁମ ଓଜନ କେତେ ହେବ ନିର୍ଣ୍ଣୟ କର । (g = 10m / s²)
- 13. 19.6 ମିଟର ଉଚ୍ଚ ଏକ କୋଠାର ଛାତ ଉପରୁ ଗୋଡ଼ିଟିଏ ପକାଗଲା । ଏହା ଭୂମିରେ ଠିକ୍ ପଡ଼ିଲା ବେଳେ ଏହାର ପରିବେଗ କେତେ ହେବ ?

- 14. 40 ମି / ସେ ପରିବେଗରେ ଏକ ବଲ୍କୁ ଭୂପୃଷ୍ଠରୁ ଉପରକୁ ଫିଙ୍ଗାହେଲା, (g = 10ମି / ସେ²) ।
 - (i) ଏହା ସର୍ବୋଚ୍ଚ କେତେ ଉଚ୍ଚତାକୁ ଉଠିବ ?
 - (ii) ସର୍ବୋଚ୍ଚ ସ୍ଥାନରେ ବଲ୍ଦ୍ୱାରା ଅତିକ୍ରାନ୍ତ ଦୂରତା ଓ ବଲ୍ର ବିସ୍ଥାପନ ତୁଳନା କର ।
 - (iii) ବଲ୍ଟି ଭୂମି ଉପରେ ଫେରିଆସି ପଡ଼ିଲାପରେ ବଲ୍ର ବିସ୍ଥାପନ ଓ ବଲ୍ଦ୍ୱାରା ଅତିକ୍ରାନ୍ତ ଦୂରତା କେତେ ହେବ, ତାହା ନିର୍ଣ୍ଣୟ କର ।
- 15. ପୃଥିବୀ ଓ ସୂର୍ଯ୍ୟ ମଧ୍ୟରେ ଥିବା ମହାକର୍ଷଣ ବଳର ପରିମାଣ କଳନା କର ? $(\mbox{ପୃଥିବୀର ବୟୁତ୍ୱ= } 6 \times 10^{24} \ \mbox{$\hat{\theta}$} \mbox{\hat{g}}), ସୂର୍ଯ୍ୟର ବୟୁତ୍ୱ = 2 \times 10^{30} \ \mbox{$\hat{\theta}$} \mbox{\hat{g}}], ଉଭୟଙ୍କ ମଧ୍ୟରେ ଥିବା ହାରାହାରି ଦୂରତ୍ୱ = 1.5 <math>\times$ 10^{11} ମିଟର)
- 16. 100ମିଟର ଉଚ୍ଚ ଏକ ଟାଓ୍ୱାର ଉପରୁ ପଥରଟିଏ ତଳକୁ ପକାଗଲା । ଏକା ସମୟରେ ଅନ୍ୟ ଏକ ପଥରକୁ 25ମି / ସେ ପରିବେଗରେ ଲୟଭାବେ ଉପରକୁ ଫିଙ୍ଗାଗଲା । ଦୁଇଟି ପଥର କେତେବେଳେ ଓ କେଉଁଠାରେ ପରସ୍କରକୁ ଅତିକ୍ରମ କରିବେ ? (g = 10ମି/ସେ²)
- 17. ଲୟଭାବେ ଉପରକୁ ଫୋପଡ଼ା ବଲ୍ 6 ସେକେଶ ପରେ ତଳକୁ ଫେରିଆସିଲା । ତେବେ
 - (i) କେତେ ପରିବେଗରେ ଏହାକୁ ଫୋପଡ଼ା ଯାଇଥିଲା ?
 - (ii) ଏହା ସର୍ବୋଚ୍ଚ କେତେ ଉଚ୍ଚତାକୁ ଉଠିଥିବ ?
 - (iii) 4 ସେକେଣ୍ଡ ପରେ ଏହା କେତେ ଦୁରତା ଅତିକ୍ରମ କରିଥିଲା ?
- 18. ତରଳ ପଦାର୍ଥରେ ବୃଡ଼ିଥିବା ବସ୍ତୁ ଉପରେ ପୁବନ ବଳ କେଉଁ ଦିଗରେ କାର୍ଯ୍ୟ କରିଥାଏ ।
- 19. ପାଣିରେ ଏକ ପ୍ଲାଷ୍ଟିକ ବୋଡଲକୁ ବୁଡ଼ାଇ ଛାଡ଼ିଦେଲେ ତାହା ଆପେ ଆପେ ପୃଷ୍ଠକୁ ଉଠିଆସେ କାହିଁକି ?
- 20. 50ଗ୍ରାମ ବୟୂତ୍ୱ ବିଶିଷ୍ଟ ଏକ ବୟୁର ଆୟତନ 20 ଘନସେମି । ଏହାକୁ ଏକ ଜଳପୂର୍ଣ୍ଣ କୁଣ୍ଡରେ ପକାଇଲେ ଏହା ବୁଡ଼ିବ ନା ଭାସିବ ବୁଝାଅ । (ଜଳର ସାନ୍ଦ୍ରତା ଏକ ଗ୍ରାମ୍ / ସେମି³) ।

000

याण्य प्रमाध्य प्रमानि । जानि ।

ବୁଇଟି ବୟୁ ମଧ୍ୟରେ ଥିବା ଦୂରତାକୁ ଅଧା କରିବେଲେ ସେମାନଙ୍କ ମଧ୍ୟରେ କାର୍ଯ୍ୟ କରୁଥିବା ମହାକର୍ଷଣ ବଳର ପରିମାଣରେ କି ପରିବର୍ତ୍ତନ ହୁଏ ?

 $_{
m g}$ – ନିଉଟନ୍ଙ୍କ ମହାକର୍ଷଣ ନିୟମ ଅନୁପାୟୀ, ଦୁଇଟି ବସ୍ତୁ ମଧ୍ୟରେ ଥିବା ଆକର୍ଷଣ ବଳର ପରିମାଣ, $F=rac{G\ m_1m_2}{R^2}$

$$\mathcal{Q}\widehat{\mathcal{Q}} \ R' = \frac{R}{2}, 6069 \ F' = \frac{G \ m_1 m_2}{R'^2} = \frac{G \ m_1 m_2}{\left(\frac{R}{2}\right)^2} = \frac{4G \ m_1 m_2}{R^2} = 4F$$

଼ ମହାକର୍ଷଣ ବଳ ମୂଳ ମୂଲ୍ୟର ଚାରିଗୁଣ ହେବ ।

- 2. ପୃଥିବୀ ଓ ପୃଥିବୀପୃଷରେ ଥିବା । କି.ଗ୍ରା. ବସ୍ଥୁତ୍ୱବିଶିଷ୍ଟ ବସ୍ଥୁ ମଧ୍ୟରେ ଥିବା ମହାକର୍ଷଣ ବଳର ପରିମାଣ କେତେ ? (ପୃଥିବୀର ବୟୁତ୍ 6 x 10²⁴ କି.ଗ୍ରା. ଓ ବ୍ୟାସାର୍ଦ୍ଧ 6.4 x 10º ମି.)
- Q Qଥିବୀର ବୟୁତ୍ୱ , $M = 6 \times 10^{24} \text{ kg}$, ବୟୁର ବୟୁତ୍ୱ m = 1 kg ପୃଥିବୀର ବ୍ୟାସାର୍ଦ୍ଦ R = 6.4 x 106 m ମହାକର୍ଷଣ ସ୍ଥିରାଙ୍କ $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$

 \therefore ମହାକର୍ଷଣ ବଳର ପରିମାଣ $F = \frac{G\ Mm}{R^2} = \frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 1}{(6.4 \times 10^{6})^2}$ $= \frac{40.02 \times 10^{13}}{40.96 \times 10^{12}} = \frac{4002 \times 10}{4096} = \frac{40020}{4096} = 9.77N$

ପୃଥିବୀ ଚନ୍ଦ୍ରକୁ ଯେତିକି ବଳରେ ଆକର୍ଷଣ କରେ; ଚନ୍ଦ୍ର ପୃଥିବୀକୁ ସେତିକି ବଳରେ ଆକର୍ଷଣ କରେ କି ? କାରଣସହ ବୁଝାଆ ।

ହ – ମହାକର୍ଷଣ ବଳର ନିୟମ କାରଣରୁ -

- ପୃଥିବୀ ଚନ୍ଦ୍ରକୁ ଯେତିକି ବଳରେ ଆକର୍ଷଣ କରେ ଚନ୍ଦ୍ର ପୃଥିବୀକୁ ସେତିକି ବଳରେ ଆକର୍ଷଣ କରେ ।
- (ii) ପ୍ରତ୍ୟେକ ବସ୍ତୁ ଅନ୍ୟ ଏକ ବସ୍ତୁ ଉପରେ ବଳ ପ୍ରୟୋଗ କରେ ଏବଂ ଦ୍ୱିତୀୟ ବସ୍ତୁ ପ୍ରଥମ ବସ୍ତୁ ଉପରେ ସମାନ

4. ଯଦି ଚନ୍ଦ୍ର ପୃଥିବୀକୁ ଆକର୍ଷଣ କରେ, ପୃଥିବୀ କାହିଁକି ଚନ୍ଦ୍ର ଆଡ଼କୁ ଗଡି କରେ ନାହିଁ କାହିଁକି ?

- ଉ ଚନ୍ଦ୍ର ପୃଥିବୀକୁ ଆକର୍ଷଣ କଲେ ମଧ୍ୟ ପୃଥିବୀ ଚନ୍ଦ୍ର ଆଡ଼କୁ ଗଡି କରେ ନାହିଁ । କାରଣ ପୃଥିବୀର ବିଶାଳ ବହୁତ୍ୱ ତୁଳନାରେ ଚନ୍ଦ୍ରର ବସ୍ତୁତ୍ୱ ନଗଣ୍ୟ । ତେଣୁ ପୃଥିବୀଠାରେ ଖୁବ୍ କମ୍ ପରିମାଣରେ ତ୍ୱରଣ ଉତ୍ପନ୍ନ ହୋଇଥାଏ ଯାହା କି
- ଦୁଇଟି ବସ୍ଥୁ ମଧ୍ୟରେ ଥିବା ଆକର୍ଷଣ ବଳ ନିମ୍ନଲିଖିତ ପରିସ୍ଥିତିରେ କିପରି ପରିବର୍ତ୍ତିତ ହେବ ?
 - ଯଦି ଗୋଟିଏ ବସ୍ଥୁର ବସ୍ଥୁତ୍ୱ ଦ୍ୱିଗୁଣିତ ହୁଏ ।
 - (ii) ଯଦି ବୟୁଦ୍ୟ ମଧ୍ୟରେ ଥିବା ଦୂରତା ତ୍ରିଗୁଣିତ ହୁଏ ।
 - (iv) ଉଭୟ ବସ୍ତୁର ବସ୍ତୁତ୍ୱ ଦ୍ୱିଗୁଣିତ ହେବ ଓ ସେମାନଙ୍କ ମଧ୍ୟରେ ଥିବା ଦୂରତା ମଧ୍ୟ ଦ୍ୱିଗୁଣିତ ହେବ ।

ର - (i) ନିଉଟନ୍ଙ୍କ ମହାକର୍ଷଣ ନିୟମ ଅନୁଯାୟୀ, ବସ୍ତୁଦ୍ୱୟ ମଧ୍ୟରେ ଥିବା ବଳର ପରିମାଣ, $F = \frac{G \; m_1 m_2}{R^2}$ ।

ଯଦି ଗୋଟିଏ ବସ୍ତୁର ବସ୍ତୁତ୍ୱ ଦ୍ୱିଗୁଣିତ ହୁଏ, ତେବେ ବସ୍ତୁତ୍ୱ = 2m

:
$$F = \frac{G 2m_1 \cdot m_2}{R^2} = \frac{2G m_1 m_2}{R^2} = 2F$$

ସୁତରାଂ ବୟୁର ବୟୁତ୍ୱ ଦ୍ୱିଗୁଣିତ ହେଲେ ଆକର୍ଷଣ ବଳର ପରିମାଣ ମଧ୍ୟ ଦ୍ୱିଗୁଣିତ ହୁଏ ।

(ii) ଯେତେବେଳେ ବସ୍ତୁଦ୍ୱୟ ମଧ୍ୟରେ ଥିବା ଦୂରତା ତ୍ରିଗୁଣିତ ହୁଏ, ତେବେ ଦୂରତା = 3R

$$\therefore F = \frac{G m_1 m_2}{(3R)^2} = \frac{G m_1 m_2}{9R^2} = \frac{1}{9} \frac{G m_1 m_2}{R^2} = \frac{1}{9} F$$

ି . ବଳର ପରିମାଣ ପ୍ରକୃତ ମୂଲ୍ୟର ଏକ ନବମାଂଶ ହେବ ।

(iii) ଯବି ଉଭୟ ବୟୁର ବୟୁତ୍ୱ ଦ୍ୱିଗୁଣିତ ହୁଏ, ତେବେ ବୟୁତ୍ୱ ଯଥାକ୍ରମେ $2m_1$ ଓ $2m_2$

$$\therefore F = \frac{G \ 2m_1.2m_2}{R^2} = \frac{4G \ m_1m_2}{R^2} = 4F$$

ି: ବଳର ପରିମାଣ ପ୍ରକୃତ ମୂଲ୍ୟର ଚାରିଗୁଣ ହେବ ।

(iv) ଯଦି ବୟୁଦ୍ୱୟ ମଧ୍ୟରେ ଦୂରତା ଦ୍ୱିଗୁଣିତ ହୁଏ, ତେବେ ଦୂରତା = 2R

ः ବଳର ପରିମାଣ ପ୍ରକୃତ ମୂଲ୍ୟର ଏକ ଚତୁର୍ଥାଂଶ ହେବ ।

6. ମହାକର୍ଷଣ ବଳର ନିୟମର ଗୁରୁତ୍ୱ କ'ଣ ?

ଉ - ମହାକର୍ଷଣ ବଳଯୋଗୁଁ

- (i) ମହାକର୍ଷଣ ବଳ ଆମକୁ ପୃଥିବୀସହ ବାନ୍ଧିରଖିଛି ।
- (ii) ସୂର୍ଯ୍ୟ ଚାରିପଟେ ଗ୍ରହଗୁଡ଼ିକ ଘୂରତ୍ତି ।
- (iii) ପୃଥିବୀ ଚାରିପଟେ ଚନ୍ଦ୍ର ଘୂରୁଛି ।
- (iv) ଚନ୍ଦ୍ର ଓ ସୂର୍ଯ୍ୟ ଯୋଗୁଁ ଜୁଆର (tides) ହେଉଛି ।

7. ମୁକ୍ତ ପତନରେ ବୟୁର ତ୍ରଣ କେତେ ?

- ଭ ପୃଥିବୀର ମାଧାକର୍ଷର ବଳ ଯୋଗୁଁ ମୁକ୍ତ ପତନଶୀଳ ବୟୁରେ ଉତ୍ପନ୍ନ ତ୍ୱରଣକୁ ମାଧାକର୍ଷଣ ଜନିତ ତ୍ୱରଣ କୁହାଯାଏ । ଏହାକୁ g ଅକ୍ଷର ଦ୍ୱାରା ସୂଚାଯାଏ । g ର ମୂଲ୍ୟ 9.8 ms⁻² ।
- 8. ପୃଥିବୀ ଓ ଯେକୌଣସି ବସ୍ଥୁ ମଧ୍ୟରେ ଥିବା ମହାକର୍ଷଣ ବଳକୁ ଆମେ କ'ଶ କହୁ ?
- ଭ ପୃଥିବୀ ଓ ଯେକୌଣସି ବସ୍ତୁ ମଧ୍ୟରେ ଥିବା ମହାକର୍ଷଣ ବଳକୁ ଓଜନ କୁହାଯାଏ ।
- 9. ରାମ ଦକ୍ଷିଣ ମେରୂଠାରେ 5 ଗ୍ରାମ୍ର ପୁନା କିଣିଲା । ବିଷୁବରେଖାଠାରେ ସେ ସେହି ସୁନାକୁ ତା' ସାଙ୍ଗକୁ ଦେଲା ସାଙ୍ଗ ଜଣକ ସୁନାର ଓଜନ ସହ ସମ୍ମତ ହେବ କି ? ଯଦି ନୁହେଁ, କାହିଁକି ?
- ଭ ବନ୍ଧୁ ଜଣକ ସୁନାର ଓଜନକୁ ଗ୍ରହଣ କରିବେ ନାହିଁ । କାରଣ ବସ୍ତୁର ଓଜନ 'g' ର ମୂଲ୍ୟ ଉପରେ ନିର୍ଭରଶୀଳ । ବିଷୁବରେଖା ଅପେକ୍ଷା ମେରୁଠାରେ 'g' ର ମୂଲ୍ୟ ଅଧିକ । ତେଣୁ ମେରୁ ଅପେକ୍ଷା ବିଷୁବରେଖାଠାରେ ସୁନାର ^{ଓଜନ} କମ୍ ହେବ ।

- 10. କାଗକ ଗୁଳା ଅପେକ୍ଷା ଖଣ୍ଡିଏ ଫର୍ଦ୍ଦ କାଗକ ଡେରିରେ ତଳେ ପଡ଼େ କାହିଁକ ?
- ତ୍ତ୍ୱ ଖଣ୍ଡିଏ କାଗକ ଫର୍ଦ୍ଦର ପୃଷ କ୍ଷେତ୍ରଫଳ (Surface area) ଅଧିକ ହୋଇଥିବାରୁ ତା' ଉପରେ ବାୟୁର ପ୍ରତିରୋଧ ଅଧିକ ହୋଇଥାଏ । କିନ୍ତୁ କାଗବଖଣ୍ଡକୁ ମୋଡ଼ି ବଲ୍ ଆକୃତିର କଲେ ତା'ର ପୃଷ କ୍ଷେତ୍ରଫଳ ହ୍ରାସପାଇବାରୁ, ତା' ଉପରେ ବାୟୁର ପ୍ରତିରୋଧ କମ୍ ହୁଏ । ତେଣୁ କାଗଜ ଫର୍ଦ୍ଦ କାଗଜନିର୍ମିତ ବଲ୍ ଅପେକ୍ଷା ଧୀର ଗତିରେ ପତିତ ହୁଏ ।
- 11. 100 କି.ଗ୍ରା. ବସ୍ତୁତ୍ୱବିଶିଷ୍ଟ ଏକ ବସ୍ତୁର ଓଳନ ପୃଥିବୀ ଓ ଚନ୍ଦ୍ରପୃଷ୍ଠରେ କେତେ ହେବ କଳନା କର ।
- Q = (i) ପୃଥିବୀପୃଷରେ ବସ୍ତୁର ଓଜନ ହେବ = $100 \text{ kg x } 9.8 \text{ ms}^{-2} = 980 \text{ N}$
 - (ii) ଚନ୍ଦ୍ରପୃଷରେ ବସ୍ତୁର ଓଜର୍ନ ହେବ = $980 \text{ N} \times \frac{1}{6} = 163.3 \text{ N}$
- 12. ଚୁମର ବ୍ୟୁତ୍ୱ କେତେ ? ଚନ୍ଦ୍ରରେ ଚୁମ ଓଳନ କେତେ ହେବ ନିର୍ଣ୍ଣୟ କର ? (g = 10m/s²)
- ର ମନେକର ତୁମର ବୟୁତ୍ୱ = 45 kg ପୃଥିବୀପୃଷରେ ତୁମର ଓଜନ = $45 \text{ kg} \times 10 \text{m/s}^2 = 450 \text{ N}$ ଚନ୍ଦ୍ରପୃଷରେ ତୁମର ଓଜନ = $450 \text{ N} \times \frac{1}{6} = 75 \text{ N}$
- 13. 19.6 ମି. ଉଚ୍ଚ ଏକ କୋଠାର ଛାତ ଉପରୁ ପଥରଟିଏ ପକାଗଲା । ଏହା ଭୂମିରେ ଠିକ୍ ପଡ଼ିଲା ବେଳେ ଏହାର ପରିବେଗ କେତେ ହେବ ?
- ହ ପ୍ରାରନ୍ତିକ ପରିବେଗ u = 0, ଉଚ୍ଚତା s = 19.6m , ତ୍ୱରଣ g = 9.8 ms⁻², ଅନ୍ତିମ ପରିବେଗ v = ? $v^2 = u^2 + 2gs$ $\Rightarrow v^2 = 0^2 + 2 \times 9.8 \text{ ms}^{-2} \times 19.6 \text{ m} = 19.6 \text{ ms}^{-2} \times 19.6 \text{ m} = (19.6 \text{ ms}^{-1})^2$ $\Rightarrow v = 19.6 \text{ ms}^{-1}$
- 14. 40 ମି / ସେ ପରିବେଗରେ ଏକ ବଲ୍କୁ ଭୂପୃଷରୁ ଉପରକୁ ଫିଙ୍ଗାହେଲା, (g = 10ମି / ସେ²)
 - (i) ଏହା ସର୍ବୋଟ କେତେ ଉଟ୍ଟତାକୁ ଉଠିବ ?
 - (ii) ସର୍ବୋଚ୍ଚ ସ୍ଥାନରେ ବଲ୍ଦ୍ୱାରା ଅତିକ୍ରାନ୍ତ ଦୂରତା ଓ ବଲ୍ର ବିସ୍ଥାପନ ତୁଳନା କର ।
 - (iii) ବଲ୍ଟି ଭୂମି ଉପରେ ଫେରିଆସି ପଡ଼ିଲାପରେ ବଲ୍ର ବିସ୍ଥାପନ ଓ ବଲ୍ଦ୍ୱାରା ଅତିକ୍ରାନ୍ତ ଦୂରତା କେତେ ହେବ, ତାହା ନିର୍ଣ୍ଣୟ କର ।
- ହ ପ୍ରାରମ୍ଭିକ ପରିବେଗ u = 40 m/s , ଅନ୍ତିମ ପରିବେଗ v = 0 m/s, $g = -10 \text{m/s}^2$, ଅତିକ୍ରାନ୍ତ ଦୂରତା s = ? $v^2 = u^2 + 2gs \Rightarrow 0^2 = (40)^2 + 2 \text{ x } (-10)s \Rightarrow 0 = 1600 2 \text{ x } 10s$ $\Rightarrow 0 = 1600 20s \Rightarrow 20s = 1600 \Rightarrow s = 80m$
 - : ବଲ୍ଟି ସର୍ବୋଚ୍ଚ 80 ମି. ଉଚ୍ଚତାକୁ ଉଠିବ । ମୋଟ ଅତିକ୍ରାନ୍ତ ଦୂରତା = 80m + 80m = 160 m, ବିସ୍ଥାପନ = 0
 - : ବଲ୍ଟି ଭୂମି ଉପରେ ଫେରିଆସି ପଡ଼ିଲାପରେ ବଲ୍ର ବିସ୍ଥାପନ 0 ଓ ବଲ୍ଦ୍ୱାରା ଅତିକ୍ରାନ୍ତ ଦୂରତା 160 ମିଟର ହେବ ।

- 15. ପୃଥିବୀ ଓ ସୂର୍ଯ୍ୟ ମଧ୍ୟରେ ଥିବା ମହାକର୍ଷଣ ବଳର ପରିମାଣ କଳନା କର² (ପୃଥିବୀର ବହୁତ୍ୱ = 6 x 10²⁴ କି.ଗ୍ରା., ସୂର୍ଯ୍ୟର ବହୁତ୍ୱ = 2 x 10³⁰ କି.ଗ୍ରା, ଉଭୟଙ୍କ ମଧ୍ୟରେ ଥିବା ହାରା_{ହାର୍ଗ} ଦୂରତ୍ୱ = 1.5 x 10¹¹ ନିଟର)
- **ଭ** ପୃଥିବୀର ବସ୍ତୁତ୍ୱ $M_{\rm e}=6 \times 10^{24} \, {\rm kg}, \,\,$ ସୂର୍ଯ୍ୟର ବସ୍ତୁତ୍ୱ $M_{\rm e}=2 \times 10^{30} \, {\rm kg}$ ପୃଥିବୀ ଓ ସୂର୍ଯ୍ୟ ମଧ୍ୟରେ ଥିବା ଦୂରତା $R=1.5 \times 10^{11} {\rm m}$ ମହାକର୍ଷଣ ସ୍ଥିରାଙ୍କ $G=6.67 \times 10^{-11} {\rm Nm^2/kg^2}$
 - \therefore ମହାକର୍ଷଣ ବଳ, $F = \frac{G M_e \times M_s}{R^2}$

$$= \frac{6.67 \times 10^{-11} \text{Nm}^2 \times 6 \times 10^{24} \text{kg} \times 2 \times 10^{30} \text{kg}}{(1.5 \times 10^{-11} \text{m})^2} = 35.57 \times 10^{21} \text{N}$$

- 16. 100 ମିଟର ଉଚ୍ଚ ଏକ ଟାଓ୍ୱାର ଉପରୁ ପଥରଟିଏ ଚଳକୁ ପକାଗଲା । ଏକା ସମୟରେ ଅନ୍ୟ ଏକ ପଥର୍କୁ 25 ମି/ସେ ପରିବେଗରେ ଲୟ ଭାବେ ଉପରକୁ ଫିଙ୍ଗାଗଲା । ଦୁଇଟି ପଥର କେତେବେଳେ ଓ କେଉଁଠାରେ ପରସ୍ତରକୁ ଅଚିକ୍ରମ କରିବେ ?
- \mathbf{g} ଟାଓ୍ୱାରର ଶୀର୍ଷଦେଶରୁ ଖସୁଥିବା ପଥର କ୍ଷେତ୍ରରେ, ପ୍ରାରମ୍ଭିକ ପରିବେଗ, $\mathbf{u}=0$ m/s ପଥରଟି ଅନ୍ୟ ପଥରକୁ ଭେଟିବା ସମୟରେ ଟାଓ୍ୱାରଠାରୁ ଏହାର ଦୂରତା $\mathbf{s}=(100$ – \mathbf{h})m ତ୍ୱରଣ $\mathbf{g}=10$ m/s², ସମୟ = t

$$s = ut + \frac{1}{2} gt^2 \Rightarrow 100 - h = 0 + \frac{1}{2} x 10t^2 \Rightarrow 100 - h = 5t^2 \Rightarrow h = 100 - 5t^2 \dots$$
 (i) ଭୂମି ଉପରୁ ଉପରକୁ ନିକ୍ଷେପ କରାଯାଉଥିବା ପଥର କ୍ଷେତ୍ରରେ, ପ୍ରାରୟିକ ପରିବେଗ, $u = 25 \text{ m/s}$

ପଥରଟି ଖସୁଥିବା ପଥରକୁ ଭେଟିବା ସମୟରେ ଭୂମିଠାରୁ ଏହାର ଦୂରତା s = h m,

ତ୍ୱରଣ
$$g = -10 \text{m/s}^2$$
, ସମୟ = t

$$s = ut + \frac{1}{2} gt^2 \Rightarrow h = 25t + \frac{1}{2} x - 10t^2 \Rightarrow h = 25t - 5t^2 \dots (ii)$$

ସମୀକରଣ (i) ଓ (ii) ରୁ $100 - 5t^2 = 25t - 5t^2 \implies 25t = 100 \implies t = 4s$

.: ପଥରଦ୍ୱୟ ପରସ୍କରକୁ 4 ସେକେଣ୍ଟ ପରେ ଭେଟିବେ ।

t ର ମାନ ସମୀକରଣ (i) ରେ ବସାଇଲେ, $h = 100 - 5t^2 = 100 - 5 \times 4^2 = 100 - 80 = 20 \, \text{m}$

- ∴ ଭୂମିଠାରୁ 20m ଉଚ୍ଚରେ ପଥରଦ୍ୱୟ ପରସ୍କରକୁ ଅତିକ୍ରମ କରିବେ ।
- 17. ଲୟଭାବେ ଉପରକୁ ଫୋପଡ଼ା ବଲ୍ 6 ସେକେଷ ପରେ ତଳକୁ ଫେରିଆସିଲା । ତେବେ
 - (i) କେତେ ପରିବେଗରେ ଏହାକୁ ଫୋପଡ଼ା ଯାଇଥିଲା ?
 - (ii) ଏହା ସର୍ବୋଟ କେତେ ଉଟତାକୁ ଉଠିଥିବ ?
 - (iii) 4 ସେକେଷ ପରେ ଏହା କେତେ ଦୂରତା ଅତିକ୍ରମ କରିଥିଲା ?

- $_{
 m g}$ ଅନ୍ତିମ ପରିବେଗ ${
 m v}=0$ m/s, ତ୍ୱରଣ ${
 m g}=-9.8$ m/s 2 , ସମୟ ${
 m t}=\frac{6{
 m s}}{2}=3{
 m s}$ ପ୍ରାରନ୍ତିକ ପରିବେଗ ${
 m u}=?$
 - (i) $v = u + at \implies 0 = u + (-9.8 \text{ m/s}^2) \times 3s \ (\because a = g)$ $\Rightarrow -u = -29.4 \text{ m/s} \implies u = 29.4 \text{ m/s}$

: ବଲ୍ଟିକୁ 29.4 m/s ପରିବେଗରେ ଫୋପଡ଼ା ଯାଇଥିଲା ।

- (ii) s = ut + $\frac{1}{2}$ gt² = 29.4 m/s x 3s + $\frac{1}{2}$ x −9.8m/s² x (3s)² = 88.2m − 44.1m = 44.1m ∴ ବଲ୍ଟି ସର୍ବୋଚ୍ଚ 44.1m ଉଚ୍ଚ ଉଠିବ ।
- (iii) $s = ut + \frac{1}{2} gt^2 = 29.4 \text{ m/s} \times 4s + \frac{1}{2} \times -9.8 \text{m/s}^2 \times (4s)^2 = 117.6 \text{m} 78.4 \text{m} = 39.2 \text{m}$
 - : 4 ସେକେଣ୍ଡ ପରେ ବଲ୍ଟି 39.2m ଦୂରତା ଅତିକ୍ରମ କରିଥିଲା ।
- 18. ତରଳ ପଦାର୍ଥରେ ବୁଡ଼ିଥିବା ବସ୍ଥ ଉପରେ ପ୍ଲବନ ବଳ କେଉଁ ଦିଗରେ କାର୍ଯ୍ୟ କରିଥାଏ ?
- ଜ ତରଳ ପଦାର୍ଥରେ ବୁଡ଼ିଥିବା ବସ୍ତୁ ଉପରେ ପ୍ଲବନ ବଳ ଉର୍ଦ୍ଧ୍ୱମୁଖୀ ବଳ ପ୍ରୟୋଗ କରିଥାଏ ।
- 19. ପାଣିରେ ଏକ ପ୍ଲାଷ୍ଟିକ ବୋତଲକୁ ବୁଡ଼ାଇ ଛାଡ଼ିଦେଲେ ତାହା ଆପେ ଆପେ ପୃଷକୁ ଉଠିଆସେ କାହିଁକି ?
- ର ପାଣିରେ ଏକ ପ୍ଲାଷ୍ଟିକ୍ ବୋତଲକୁ ବୁଡ଼ାଇ ଛାଡ଼ିଦେଲେ ବୋତଲ ଉପରେ ଦୁଇଟି ବଳ କାର୍ଯ୍ୟ କରେ । ପ୍ରଥମଟି ବୋତଲର ଓଜନ ଓ ଦ୍ୱିତୀୟଟି ପ୍ଲବନ ବଳ । ଏହି ଦୁଇଟି ବିପରୀତମୁଖୀ ବଳ ମଧ୍ୟରୁ ପ୍ଲବନ ବଳ ବୋତଲର ଓଜନଠାରୁ ଅଧିକ ହୋଇଥିବାରୁ ବୋତଲଟି ଆପେ ଆପେ ପୃଷକୁ ଚାଲିଆସେ ।
- 20. 50 ଗ୍ରାମ୍ ବସ୍ତୁତ୍ୱବିଶିଷ୍ଟ ଏକ ବସ୍ତୁର ଆୟତନ 20 ଘନ ସେ.ମି. । ଏହାକୁ ଏକ ଜଳପୂର୍ଣ୍ଣ କୁଷରେ ପକାଇଲେ ଏହା ବୃଡ଼ିବ ନା ଭାସିବ । (ଜଳର ସାନ୍ଦ୍ରତା ଏକ ଗ୍ରାମ୍ / ସେ.ମି.³)

Q - Q ବ୍ୟୁର ଆୟତନ $V = 20 cm^3$, ବ୍ୟୁର ବ୍ୟୁତ୍ୱ m = 50 gm

ସାହ୍ରତା =
$$\frac{936}{2000} = \frac{50g}{2000} = 2.5 \text{ gm/cm}^3$$

ଜଳର ସାନ୍ଦ୍ରତା = 1 gm/cm³

ବ୍ରହୁର ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା =
$$\frac{\text{ବ୍ରହୁର ସାନ୍ଦ୍ରତା}}{\text{ଜଳର ସାନ୍ଦ୍ରତା}} = \frac{2.5 \text{gm} / \text{cm}^3}{1 \text{gm} / \text{cm}^3} = 2.5$$

: ଆପେକ୍ଷିକ ସାନ୍ଦ୍ରତା 1 ଠାରୁ ଅଧିକ ହୋଇଥିବାରୁ ବସ୍ତୁଟି ବୁଡ଼ିବ ।