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FOREWORD

The National Curriculum Framework (NCF), 2005 recommends that children’s life
at  school must be linked to their life outside the school. This principle marks a
departure from the legacy of bookish learning which continues to shape our system
and causes a gap between the school, home and community. The syllabi and
textbooks developed on the basis of NCF signify an attempt to implement this basic
idea. They also attempt to discourage rote learning and the maintenance of sharp
boundaries between different subject areas. We hope these measures will take us
significantly further in the direction of a child-centred system of education outlined
in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue
imaginative activities and questions. We must recognise that, given space, time and
freedom, children generate new knowledge by engaging with the information passed
on to them by adults. Treating the prescribed textbook as the sole basis of examination
is one of the key reasons why other resources and sites of learning are ignored.
Inculcating creativity and initiative is possible if we perceive and treat children as
participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change is school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to
teaching. The methods used for teaching and evaluation will also determine how
effective this textbook proves for making children’s life at school a happy experience,
rather than a source of stress or boredom. Syllabus designers have tried to address
the problem of curricular burden by restructuring and reorienting knowledge at
different stages with greater consideration for child psychology and the time available
for teaching. The textbook attempts to enhance this endeavour by giving higher
priority and space to opportunities for contemplation and wondering, discussion in
small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates
the hard work done by the textbook development committee responsible for this
book. We wish to thank the Chairperson of the advisory group in science
and mathematics, Professor J.V. Narlikar and the Chief Advisor for this book,
Professor A.W. Joshi for guiding the work of this committee. Several teachers
contributed to the development of this textbook; we are grateful to their principals
for making this possible. We are indebted to the institutions and organisations
which have generously permitted us to draw upon their resources, material and
personnel. We are especially grateful to the members of the National Monitoring
Committee, appointed by the Department of Secondary and Higher Education,
Ministry of Human Resource Development under the Chairpersonship of Professor
Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution.
As an organisation committed to systemic reform and continuous improvement in
the quality of its products, NCERT welcomes comments and suggestions which will
enable us to undertake further revision and refinement.

Director

New Delhi National Council of Educational
20 December 2005 Research and Training
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PREFACE

More than a decade ago, based on National Policy of Education (NPE-1986),
National Council of Educational Research and Training published physics
textbooks for Classes XI and XII, prepared under the chairmanship of
Professor T. V. Ramakrishnan, F.R.S., with the help of a team of learned co-authors.
The books were well received by the teachers and students alike. The books, in
fact, proved to be milestones and trend-setters. However, the development of
textbooks, particularly science books, is a dynamic process in view of the changing
perceptions, needs, feedback and the experiences of the students, educators and
the society. Another version of the physics books, which was the result of the
revised syllabus based on National Curriculum Framework for School Education-2000
(NCFSE-2000), was brought out under the guidance of Professor Suresh Chandra,
which continued up to now. Recently the NCERT brought out the National Curriculum

Framework-2005 (NCF-2005), and the syllabus was accordingly revised during a
curriculum renewal process at school level. The higher secondary stage syllabus
(NCERT, 2005) has been developed accordingly. The Class XI textbook contains
fifteen chapters in two parts. Part I contains first eight chapters while Part II contains
next seven chapters. This book is the result of the renewed efforts of the present
Textbook Development Team with the hope that the students will appreciate the
beauty and logic of physics. The students may or may not continue to study physics
beyond the higher secondary stage, but we feel that they will find the thought
process of physics useful in any other branch they may like to pursue, be it finance,
administration, social sciences, environment, engineering, technology, biology or
medicine. For those who pursue physics beyond this stage, the matter developed
in these books will certainly provide a sound base.

Physics is basic to the understanding of almost all the branches of science and
technology. It is interesting to note that the ideas and concepts of physics are
increasingly being used in other branches such as economics and commerce, and
behavioural sciences too. We are conscious of the fact that some of the underlying
simple basic physics principles are often conceptually quite intricate. In this book,
we have tried to bring in a conceptual coherence. The pedagogy and the use of
easily understandable language are at the core of our effort without sacrificing the
rigour of the subject. The nature of the subject of physics is such that a certain
minimum use of mathematics is a must. We have tried to develop the mathematical
formulations in a logical fashion, as far as possible.

Students and teachers of physics must realise that physics is a branch which
needs to be understood, not necessarily memorised. As one goes from secondary to
higher secondary stage and beyond, physics involves mainly four components,
(a) large amount of mathematical base, (b) technical words and terms, whose
normal English meanings could be quite different, (c) new intricate concepts,
and (d) experimental foundation. Physics needs mathematics because we wish
to develop objective description of the world around us and express our observations
in terms of measurable quantities. Physics discovers new properties of particles
and wants to create a name for each one. The words are picked up normally from
common English or Latin or Greek, but gives entirely different meanings to these
words. It would be illuminating to look up words like energy, force, power, charge,
spin, and several others, in any standard English dictionary, and compare their
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meanings with their physics meanings. Physics develops intricate and often weird-
looking concepts to explain the behaviour of particles. Finally, it must be
remembered that entire physics is based on observations and experiments, without
which a theory does not get acceptance into the domain of physics.

This book has some features which, we earnestly hope, will enhance its
usefulness for the students. Each chapter is provided with a Summary at its end
for a quick overview of the contents of the chapter. This is followed by Points to
Ponder which points out the likely misconceptions arising in the minds of students,
hidden implications of certain statements/principles given in the chapter and
cautions needed in applying the knowledge gained from the chapter. They also
raise some thought-provoking questions which would make a student think about
life beyond physics. Students will find it interesting to think and apply their mind
on these points. Further, a large number of solved examples are included in the
text in order to clarify the concepts and/or to illustrate the application of these
concepts in everyday real-life situations. Occasionally, historical perspective has
been included to share the excitement of sequential development of the subject of
physics. Some Boxed items are introduced in many chapters either for this purpose
or to highlight some special features of the contents requiring additional attention
of the learners. Finally, a Subject Index has been added at the end of the book for
ease in locating keywords in the book.

The special nature of physics demands, apart from conceptual understanding,
the knowledge of certain conventions, basic mathematical tools, numerical values
of important physical constants, and systems of measurement units covering a
vast range from microscopic to galactic levels. In order to equip the students, we
have included the necessary tools and database in the form of Appendices A-1 to
A-9 at the end of the book. There are also some other appendices at the end of
some chapters giving additional information or applications of matter discussed in
that chapter.

Special attention has been paid for providing illustrative figures. To increase
the clarity, the figures are drawn in two colours. A large number of Exercises are
given at the end of each chapter. Some of these are from real-life situations. Students
are urged to solve these and in doing so, they may find them very educative. Moreover,
some Additional Exercises are given which are more challenging. Answers and
hints to solve some of these are also included. In the entire book, SI units have been
used. A comprehensive account of ‘units and measurement’ is given in Chapter 2 as a
part of prescribed syllabus/curriculum as well as a help in their pursuit of physics.
A box-item in this chapter brings out the difficulty in measuring as simple a thing as
the length of a long curved line. Tables of SI base units and other related units are
given here merely to indicate the presently accepted definitions and to indicate the
high degree of accuracy with which measurements are possible today. The numbers
given here are not to be memorised or asked in examinations.

There is a perception among students, teachers, as well as the general public
that there is a steep gradient between secondary and higher secondary stages.
But a little thought shows that it is bound to be there in the present scenario of
education. Education up to secondary stage is general education where a student
has to learn several subjects – sciences, social sciences, mathematics, languages,
at an elementary level. Education at the higher secondary stage and beyond, borders
on acquiring professional competence, in some chosen fields of endeavour. You
may like to compare this with the following situation. Children play cricket or
badminton in lanes and small spaces outside (or inside) their homes. But then
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some of them want to make it to the school team, then district team, then State
team and then the National team. At every stage, there is bound to be a steep
gradient. Hard work would have to be put in whether students want to pursue
their education in the area of sciences, humanities, languages, music, fine arts,
commerce, finance, architecture, or if they want to become sportspersons or fashion
designers.

Completing this book has only been possible because of the spontaneous
and continuous support of many people. The Textbook Development Team is
thankful to Dr. V. H. Raybagkar for allowing us to use his box item in Chapter
4 and to Dr. F. I. Surve for allowing us to use two of his box items in Chapter 15.
We express also our gratitude to the Director, NCERT, for entrusting us with
the task of preparing this textbook as a part of national effort for improving
science education. The Head, Department of Education in Science and
Mathematics, NCERT, was always willing to help us in our endeavour in every
possible way.

The previous text got excellent academic inputs from teachers, students and
experts who sincerely suggested improvement during the past few years. We are
thankful to all those who conveyed these inputs to NCERT. We are also thankful to
the members of the Review Workshop and Editing Workshop organised to discuss
and refine the first draft. We thank the Chairmen and their teams of authors for
the text written by them in 1988, which provided the base and reference for
developing the 2002 version as well as the present version of the textbook.
Occasionally, substantial portions from the earlier versions, particularly those
appreciated by students/teachers, have been adopted/adapted and retained in
the present book for the benefit of coming generation of learners.

We welcome suggestions and comments from our valued users, especially
students and teachers. We wish our young readers a happy journey to the exciting
realm of physics.

A. W. JOSHI

Chief Advisor

Textbook Development Committee

vii
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(Adapted from the website of the Nobel Foundation
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The strong nuclear force binds protons and

neutrons in a nucleus and is the strongest of

nature’s four fundamental forces. A mystery

surrounding the strong nuclear force has been

solved. The three quarks within the proton can

sometimes appear to be free, although no free

quarks have ever been observed. The quarks

have a quantum mechanical property called

‘colour’ and interact with each other through

the exchange of particles called ‘gluons’

— nature glue.

BACK COVER

(Adapted from the website of the ISRO
http://www.isro.gov.in)

CARTOSAT-1 is a state-of-the-art Remote

Sensing Satellite, being eleventh one in the

Indian Remote Sensing (IRS) Satellite Series,

built by ISRO. CARTOSAT-1, having mass of

156 kg at lift off, has been launched into a

618 km high polar Sun Synchronous Orbit (SSO)

by ISRO’s Polar Satellite Launch Vehicle,

PSLV-C6. It is mainly intended for cartographic

applications.
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A NOTE FOR THE TEACHERS

To make the curriculum learner-centred, students should be made to participate and interact
in the learning process directly. Once a week or one out of every six classes would be a good
periodicity for such seminars and mutual interaction. Some suggestions for making the discussion
participatory are given below, with reference to some specific topics in this book.

Students may be divided into groups of five to six. The membership of these groups may be
rotated during the year, if felt necessary.

The topic for discussion can be presented on the board or on slips of paper. Students should
be asked to write their reactions or answers to questions, whichever is asked, on the given
sheets. They should then discuss in their groups and add modifications or comments in those
sheets. These should be discussed either in the same or in a different class. The sheets may also
be evaluated.

We suggest here three possible topics from the book. The first two topics suggested are, in
fact, very general and refer to the development of science over the past four centuries or more.
Students and teachers may think of more such topics for each seminar.

1. Ideas that changed civilisation

Suppose human beings are becoming extinct. A message has to be left for future generations or
alien visitors. Eminent physicist R P Feynmann wanted the following message left for future
beings, if any.

“Matter is made up of atoms”
A lady student and teacher of literature, wanted the following message left:

“Water existed, so human beings could happen”.
Another person thought it should be: “Idea of wheel for motion”
Write down what message each one of you would like to leave for future generations. Then

discuss it in your group and add or modify, if you want to change your mind. Give it to your
teacher and join in any discussion that follows.

2. Reductionism

Kinetic Theory of Gases relates the Big to the Small, the Macro to the Micro. A gas as a system
is related to its components, the molecules. This way of describing a system as a result of the
properties of its components is usually called Reductionism. It explains the behaviour of the
group by the simpler and predictable behaviour of individuals. Macroscopic observations and
microscopic properties have a mutual interdependence in this approach. Is this method useful?

This way of understanding has its limitations outside physics and chemistry, may be even
in these subjects. A painting cannot be discussed as a collection of the properties of chemicals
used in making the canvas and the painting. What emerges is more than the sum of its
components.

Question: Can you think of other areas where such an approach is used?

          Describe briefly a system which is fully describable in terms of its components.  Describe
one which is not. Discuss with other members of the group and write your views. Give it to your
teacher and join in any discussion that may follow.

3. Molecular approach to heat

Describe what you think will happen in the following case. An enclosure is separated by a
porous wall into two parts. One is filled with nitrogen gas (N

2
) and the other with CO

2
. Gases

will diffuse from one side to the other.

Question 1: Will both gases diffuse to the same extent? If not, which will diffuse more. Give
reasons.

Question 2: Will the pressure and temperature be unchanged? If not, what will be the changes
in both. Give reasons.

Write down your answers. Discuss with the group and modify them or add comments.
Give to the teacher and join in the discussion.

Students and teachers will find that such seminars and discussions lead to tremendous
understanding, not only of physics, but also of science and social sciences. They also bring in
some maturity among students.
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CHAPTER NINE

MECHANICAL PROPERTIES OF SOLIDS

9.1 INTRODUCTION

In Chapter 7, we studied the rotation of the bodies and then
realised that the motion of a body depends on how mass is
distributed within the body.  We restricted ourselves to simpler
situations of rigid bodies.  A rigid body generally means a
hard solid object having a definite shape and size.  But in
reality,  bodies can be stretched, compressed and bent. Even
the  appreciably  rigid  steel bar can be deformed when a
sufficiently large external force is applied on it.  This means
that solid bodies are not perfectly rigid.

A solid has  definite shape and size. In order to change (or
deform) the shape or size of a body, a force  is required. If
you stretch a helical spring by gently pulling its ends, the
length of the spring increases slightly. When you leave the
ends of the spring, it regains its original size and shape.  The
property of a body, by virtue of  which  it tends to regain its
original size and shape when the applied force is removed, is
known as elasticity and the deformation caused is known
as elastic deformation. However, if you apply force to a lump
of putty or mud, they have no gross tendency to regain their
previous shape, and they get permanently deformed. Such
substances are called plastic and this property is called
plasticity. Putty and mud are close to ideal plastics.

 The elastic behaviour of materials plays an important role
in engineering design.  For example, while designing a
building, knowledge of elastic properties of materials like steel,
concrete etc. is essential.  The same is true in the design of
bridges, automobiles, ropeways etc.  One could also ask  —
Can we design an aeroplane which is very  light  but
sufficiently  strong?  Can we design an artificial limb which
is lighter but stronger?  Why does a railway track have a
particular shape  like I?  Why  is glass brittle while brass is
not?  Answers to such questions begin with the study of how
relatively  simple kinds of loads or forces act to deform
different solids bodies.  In this chapter, we  shall study the

9.1 Introduction

9.2 Elastic behaviour of solids

9.3 Stress and strain

9.4 Hooke’s law

9.5 Stress-strain curve

9.6 Elastic moduli

9.7 Applications of elastic

behaviour of materials

Summary

Points to ponder

Exercises

Additional exercises
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236 PHYSICS

elastic behaviour and mechanical properties of
solids which  would answer many such
questions.

9.2  ELASTIC BEHAVIOUR OF SOLIDS

We know that in a solid, each atom or molecule
is surrounded by neighbouring atoms or
molecules. These are bonded together by
interatomic or intermolecular forces and stay
in a stable equilibrium position. When a solid is
deformed, the  atoms or molecules are displaced
from their equilibrium positions causing a
change in the interatomic   (or intermolecular)
distances. When the deforming force is removed,
the interatomic forces tend to drive them back
to their original positions. Thus the body regains
its original shape and size.  The restoring
mechanism can be visualised by taking a model
of spring-ball system shown in the Fig. 9.1. Here
the balls represent atoms and springs represent
interatomic forces.

Fig. 9.1 Spring-ball model for the illustration of elastic

behaviour of solids.

If you try to displace any ball from its
equilibrium position, the spring system tries to
restore the ball back to its original position. Thus
elastic behaviour of  solids can be explained in
terms of microscopic nature of the solid.  Robert
Hooke, an English  physicist  (1635 - 1703 A.D)
performed experiments on springs and found
that the elongation (change in the  length)
produced in a body is proportional to the applied
force or load.  In 1676, he presented his law of

elasticity, now called Hooke’s  law.  We shall
study about it in Section 9.4. This law, like
Boyle’s law, is one of the earliest quantitative
relationships in science.  It is very important to
know the behaviour of the materials under
various kinds of load from the context of
engineering design.

9.3  STRESS AND STRAIN

When  forces are applied on a body in such a

manner that the body is still in static equilibrium,
it is deformed to a small or large extent depending

upon the nature of the material of the body and
the magnitude of the deforming force.  The
deformation may not be noticeable visually in

many materials but it is there.  When a body is
subjected to a deforming force, a restoring force

is developed in the body.  This restoring force is
equal in magnitude but opposite in direction to

the applied force. The restoring force per unit area
is known as stress.  If F is the force applied normal
to the cross–section and A  is the  area of cross

section of  the body,
Magnitude of the stress = F/A (9.1)
The SI unit of stress is  N m–2 or pascal (Pa)

and its dimensional formula is [ ML–1T–2 ].
There are three ways in which a solid may

change its dimensions when an external force
acts on  it. These are shown in Fig. 9.2.  In
Fig.9.2(a), a cylinder is stretched by two equal
forces applied normal to its cross-sectional area.
The restoring   force per unit area  in this case
is called tensile stress. If the cylinder is
compressed under the action of applied forces,
the restoring force per unit area is known as
compressive stress. Tensile or compressive
stress can also be termed as longitudinal stress.

In both the cases, there is a change in the
length of the cylinder. The change in the length
∆L to the original length L of the body (cylinder
in this case) is known as longitudinal strain.

Longitudinal strain  
∆

=
L

L
(9.2)

However, if two equal and opposite  deforming
forces are applied parallel to the cross-sectional
area of the cylinder, as shown in Fig. 9.2(b),
there is relative displacement between the
opposite faces of the cylinder.  The restoring force
per unit area developed due to the applied
tangential force is known as tangential or
shearing stress.
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As a result of applied tangential force, there
is a relative displacement ∆x between opposite
faces of the cylinder as shown in the Fig. 9.2(b).
The strain so produced is known as shearing
strain and it is defined as the ratio of relative
displacement of the faces ∆x  to the length of
the cylinder L.

Shearing strain 
∆

=
x

L
 = tan θ (9.3)

where θ is the angular displacement of the
cylinder from the vertical (original position of
the cylinder). Usually  θ is very small, tan θ
is nearly equal to angle θ, (if θ = 10°, for
example, there is only 1% difference between θ
and tan θ).

It can also be visualised, when a book is
pressed with the hand and pushed horizontally,
as shown in Fig. 9.2 (c).

Thus, shearing strain  = tan θ ≈ θ (9.4)
In Fig. 9.2 (d), a solid sphere placed in the

fluid under high pressure is compressed
uniformly on all sides. The force applied by the
fluid acts in perpendicular direction at each
point of the surface and the body is said to be
under hydraulic compression. This leads to
decrease in its volume without any change of
its geometrical shape.

The body develops internal restoring forces
that are equal and opposite to the forces applied
by the fluid (the body restores its original shape
and size when taken out from the fluid). The
internal restoring force per unit area in this case

Robert Hooke
(1635 – 1703 A.D.)

Robert Hooke was born on July 18, 1635 in Freshwater, Isle of Wight. He was
one of the most brilliant and versatile seventeenth century English scientists.
He attended Oxford University but never graduated. Yet he was an extremely
talented inventor, instrument-maker and building designer. He assisted Robert
Boyle in the construction of Boylean air pump. In 1662, he was appointed as
Curator of Experiments to the newly founded Royal Society. In 1665, he became
Professor of Geometry in Gresham College where he carried out his astronomi-
cal observations. He built a Gregorian reflecting telescope; discovered the fifth
star in the trapezium and an asterism in the constellation Orion; suggested that
Jupiter rotates on its axis; plotted detailed sketches of Mars which were later
used in the 19th century to determine the planet’s rate of rotation; stated the
inverse square law to describe planetary motion, which Newton modified later
etc. He was elected Fellow of Royal Society and also served as the Society’s
Secretary from 1667 to 1682. In his series of observations presented in Micrographia, he suggested
wave theory of light and first used the word ‘cell’ in a biological context as a result of his studies of cork.

Robert Hooke is best known to physicists for his discovery of law of elasticity: Ut tensio, sic vis (This
is a Latin expression and it means as the distortion, so the force). This law laid the basis for studies of
stress and strain and for understanding the elastic materials.

(a) (b) (c) (d)

Fig. 9.2 (a) A cylindrical body under tensile stress elongates by ∆L (b) Shearing stress on a cylinder deforming it by

an angle θ (c) A body subjected to shearing stress (d) A solid body under a stress normal to the surface at

every point (hydraulic stress). The volumetric strain is ∆V/V, but there is no change in shape.
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is known as hydraulic stress and in magnitude
is equal to the hydraulic pressure (applied force
per unit area).

The strain produced by a hydraulic pressure
is called volume strain and is defined as the
ratio of change in volume (∆V) to the original
volume (V ).

Volume strain 
∆

=
V

V
(9.5)

Since the strain is a ratio of change in
dimension to the original dimension, it has no
units or dimensional formula.

9.4  HOOKE’S LAW

Stress and strain take different forms in the
situations depicted in the Fig. (9.2). For small
deformations the stress and strain are
proportional to each other. This is known as
Hooke’s law.
Thus,

stress ∝ strain
stress = k × strain (9.6)

where k is the proportionality constant and is
known as modulus of elasticity.

Hooke’s law is an empirical law and is found
to be valid for most materials. However, there
are some materials which do not exhibit this
linear relationship.

9.5  STRESS-STRAIN CURVE

The relation between the stress and the strain
for a given material under tensile stress can be
found experimentally. In a standard test of
tensile properties, a test cylinder or a wire is
stretched by an applied force. The fractional
change in length (the strain) and the applied
force needed to cause the strain are recorded.
The applied force is gradually increased in steps
and the change in length is noted. A graph is
plotted between the stress (which is equal in
magnitude to the applied force per unit area)
and the strain produced. A typical graph for a
metal is shown in Fig. 9.3. Analogous graphs
for compression and shear stress may also be
obtained. The stress-strain curves vary from
material to material. These curves help us to
understand how a given material deforms with
increasing loads. From the graph, we can see
that in the region between O to A, the curve is
linear.  In this region, Hooke’s law is obeyed.

The body regains its original dimensions when
the applied force is removed. In this region, the
solid behaves as an elastic body.

In the region from A to B, stress and strain
are not proportional. Nevertheless, the body still
returns to its original dimension when the load
is removed. The point B in the curve is known
as yield point (also known as elastic limit) and
the corresponding stress is known as yield
strength (σ

y
) of the material.

If the load is increased further, the stress
developed exceeds the yield strength and strain
increases rapidly even for a small change in the
stress. The portion of the curve between B and
D shows this. When the load is removed, say at
some point C between B and D, the body does
not regain its original dimension. In this case,
even when the stress is zero, the strain is not
zero. The material is said to have a permanent
set. The deformation is said to be plastic
deformation. The point D on the graph is the
ultimate tensile strength (σ

u
) of the material.

Beyond this point, additional strain is produced
even by a reduced applied force and fracture
occurs at point E. If the ultimate strength and
fracture points D and E are close, the material
is said to be brittle. If they are far apart, the
material is said to be ductile.

As stated earlier, the stress-strain behaviour
varies from material to material. For example,
rubber can be pulled to several times its original
length and still returns to its original shape.
Fig. 9.4 shows stress-strain curve for the elastic
tissue of aorta, present in the heart. Note that
although elastic region is very large, the material

Fig. 9.3 A typical stress-strain curve for a metal.
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does not obey Hooke’s law over most of the
region. Secondly, there is no well defined plastic
region. Substances like tissue of aorta, rubber
etc. which can be stretched to cause large strains
are called elastomers.

9.6  ELASTIC MODULI

The proportional region within the elastic limit
of the stress-strain curve (region OA in Fig. 9.3)
is of great importance for structural and
manufacturing engineering designs. The ratio
of stress and strain, called modulus of elasticity,
is found to be a characteristic of the material.

9.6.1  Young’s Modulus

Experimental observation show that for a given
material, the magnitude of the strain produced
is same whether the stress is tensile or
compressive. The ratio of tensile (or compressive)
stress (σ) to the longitudinal strain (ε) is defined as
Young’s modulus and is denoted by the symbol Y.

Y =
σ

ε
(9.7)

From Eqs. (9.1) and (9.2), we have

Y = (F/A)/(∆L/L)
   = (F × L) /(A × ∆L) (9.8)

Since strain is a dimensionless quantity, the
unit of Young’s modulus is the same as that of
stress i.e., N m–2 or Pascal (Pa). Table 9.1 gives
the values of Young’s moduli and yield strengths
of some material.

From the data given in Table 9.1, it is noticed
that for metals Young’s moduli are large.
Therefore, these materials require a large force
to produce small change in length. To increase
the length of a thin steel wire of 0.1 cm2 cross-
sectional area by 0.1%, a force of 2000 N is
required. The force required to produce the same
strain in aluminium, brass and copper wires
having the same cross-sectional area are 690 N,
900 N and 1100 N respectively. It means that
steel is more elastic than copper, brass and
aluminium. It is for this reason that steel is

Fig. 9.4 Stress-strain curve for the elastic tissue of

Aorta, the large tube (vessel) carrying blood

from the heart.

Table 9.1 Young’s moduli and yield strenghs of some material

# Substance tested under compression
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preferred in heavy-duty machines and in
structural designs. Wood, bone, concrete and
glass have rather small Young’s moduli.

Example 9.1  A structural steel rod  has a
radius of 10 mm and a length of 1.0 m. A
100 kN force stretches it along its length.
Calculate (a) stress, (b) elongation, and (c)
strain on the rod. Young’s modulus, of
structural steel is 2.0 × 1011 N m-2.

Answer We assume that the rod is held by a
clamp at one end, and the force F is applied at
the other end, parallel to the length of the rod.
Then the stress on the rod is given by

Stress
F

A
=  =

F

rπ
2

        
=

× ( )
×

−

100 10 N

3.14 10 m

3

2 2

         = 3.18 × 108 N m–2

The elongation,

( )F/A L
L

Y
∆ =

    = 
( ) ( )×

×

8 –2

11 –2

1m3.18 10 N m

2 10 N m

    = 1.59 × 10–3 m
    = 1.59 mm

The strain is given by
Strain   = ∆L/L

            = (1.59 × 10–3 m)/(1m)
             = 1.59 × 10–3

             = 0.16 % t

Example 9.2 A copper wire of length 2.2
m and a steel wire of length 1.6 m, both of
diameter 3.0 mm, are connected end to end.
When stretched by a load, the net
elongation is found to be 0.70 mm. Obtain
the load applied.

Answer The copper and steel wires are under
a tensile stress because they have the same
tension (equal to the load W) and the same area
of cross-section A. From Eq. (9.7) we have stress
= strain × Young’s modulus. Therefore

W/A = Y
c
 × (∆L

c
/L

c
) = Y

s
 × (∆L

s
/L

s
)

where the subscripts c  and s refer to copper
and stainless steel respectively. Or,

∆L
c
/∆L

s
 = (Y

s
/Y

c
) × (L

c
/L

s
)

Given L
c
 = 2.2 m, L

s
 = 1.6 m,

From Table 9.1 Y
c
 = 1.1 × 1011 N.m–2, and

   Y
s
 = 2.0 × 1011 N.m–2.

∆L
c
/∆L

s
 = (2.0 × 1011/1.1 × 1011) × (2.2/1.6) = 2.5.

The total elongation is given to be
∆L

c
 + ∆L

s
 =  7.0  × 10-4 m

Solving the above equations,
∆L

c
 = 5.0  × 10-4 m,   and   ∆L

s
 = 2.0  × 10-4 m.

Therefore
W   = (A × Y

c
 × ∆L

c
)/L

c

= π (1.5 × 10-3)2 × [(5.0 × 10-4 × 1.1 × 1011)/2.2]
= 1.8 × 102 N   t

Example 9.3 In a human pyramid in a
circus, the entire weight of the balanced
group is supported by the legs of a
performer who is lying on his back (as
shown in Fig. 9.5). The combined mass of
all the persons performing the act, and the
tables, plaques etc. involved is 280 kg. The
mass of the performer lying on his back at
the bottom of the pyramid is 60 kg. Each
thighbone (femur) of this performer has a
length of 50 cm and an effective radius of
2.0 cm. Determine the amount by which
each thighbone gets compressed under the
extra load.

Fig. 9.5 Human pyramid in a circus.

u
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Answer Total mass of all the performers, tables,

plaques etc.     = 280 kg
Mass of the performer  = 60 kg

Mass supported by the legs of the performer

at the bottom of the pyramid

= 280 – 60 = 220 kg

Weight of this supported mass

 = 220 kg wt. = 220 × 9.8 N = 2156 N.
Weight supported by each thighbone of the

performer = ½ (2156) N = 1078 N.

From Table 9.1, the Young’s modulus for bone

is given by

Y = 9.4 × 109 N m–2.

Length of each thighbone L = 0.5 m
the radius of thighbone = 2.0 cm

Thus the cross-sectional area of the thighbone

A  = π × (2 × 10-2)2 m2 = 1.26 × 10-3 m2.

Using Eq. (9.8), the compression in each

thighbone (∆L) can be computed as

∆L = [(F × L)/(Y × A)]
= [(1078 × 0.5)/(9.4 × 109 × 1.26 × 10-3)]

= 4.55 × 10-5 m or 4.55 × 10-3 cm.

This is a very small change! The fractional

decrease in the thighbone is ∆L/L = 0.000091

or 0.0091%. t

9.6.2 Determination of Young’s Modulus of
the Material of a Wire

A typical experimental arrangement to determine

the Young’s modulus of a material of wire under
tension is shown in Fig. 9.6. It consists of two
long straight wires of same length and equal

radius suspended side by side from a fixed rigid
support. The wire A (called the reference wire)

carries a millimetre main scale M and a pan to
place a weight. The wire B (called the
experimental wire) of uniform area of cross-

section also carries a pan in which known
weights can be placed. A vernier scale V is

attached to a pointer at the bottom of the
experimental wire B, and the main scale M is

fixed to the reference wire A. The weights placed
in the pan exert a downward force and stretch
the experimental wire under a tensile stress. The

elongation of the wire (increase in length) is
measured by the vernier arrangement. The

reference wire is used to compensate for any
change in length that may occur due to change
in room temperature, since any change in length

of the reference wire due to temperature change

will be accompanied by an equal change in
experimental wire. (We shall study  these
temperature effects in detail in Chapter 11.)

Fig. 9.6 An arrangement for the determination of

Young’s modulus of the material of a wire.

Both the reference and experimental wires are

given an initial small load to keep the wires
straight and the vernier reading is noted. Now

the experimental wire is gradually loaded with

more weights to bring it under a tensile stress

and the vernier reading is noted again. The

difference between two vernier readings gives

the elongation produced in the wire. Let r and L
be the initial radius and length of the

experimental wire, respectively. Then the area

of cross-section of the wire would be πr2. Let M

be the mass that produced an elongation ∆L in

the wire. Thus the applied force is equal to Mg,

where g is the acceleration due to gravity. From
Eq. (9.8), the Young’s modulus of the material

of the experimental wire is given by

Y
σ

ε
=  = 2

.
Mg L

Lrπ ∆

= Mg × L/(πr2 × ∆L) (9.9)
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9.6.3 Shear Modulus

The ratio of shearing stress to the corresponding

shearing strain is called the shear modulus of

the material and is represented by G. It is also

called the modulus of rigidity.

G  = shearing stress (σ
s
)/shearing strain

G  = (F/A)/(∆x/L)

    = (F × L)/(A × ∆x) (9.10)

Similarly, from Eq. (9.4)

G  = (F/A)/θ

     = F/(A × θ) (9.11)

The shearing stress σ
s
 can also be expressed as

σs  =  G  × θ (9.12)

SI unit of shear modulus is N m–2 or Pa. The

shear moduli of a few common materials are

given in Table 9.2. It can be seen that shear

modulus (or modulus of rigidity) is generally less

than Young’s modulus (from Table 9.1). For most

materials G ≈ Y/3.

Table 9.2 Shear moduli (G) of some common

materials

Material G (109 Nm–2

or GPa)

Aluminium 25

Brass 36

Copper 42

Glass 23

Iron 70

Lead 5.6

Nickel 77

Steel 84

Tungsten 150

Wood 10

 Example 9.4 A square lead slab of side 50
cm and thickness 10 cm is subject to a
shearing force (on its narrow face) of 9.0 ×
104 N. The lower edge is riveted to the floor.
How much will the upper edge be displaced?

Answer  The lead slab is fixed and the force is
applied parallel to the narrow face as shown in
Fig. 9.7. The area of the face parallel to which
this force is applied is

 A  = 50 cm × 10 cm

                = 0.5 m × 0.1 m

     = 0.05 m2

Therefore, the stress applied is
    = (9.4  × 104 N/0.05 m2)

                         = 1.80 × 106 N.m–2

Fig. 9.7

We know that shearing strain = (∆x/L)= Stress /G.

Therefore the displacement ∆x = (Stress × L)/G

 = (1.8 × 106 N m–2 × 0.5m)/(5.6 × 109 N m–2)

 = 1.6 × 10–4 m = 0.16 mm   t

9.6.4  Bulk Modulus

In Section (9.3), we have seen that when a body

is submerged in a fluid, it undergoes a hydraulic

stress (equal in magnitude to the hydraulic

pressure). This leads to the decrease in the

volume of the body thus producing a strain called

volume strain [Eq. (9.5)]. The ratio of hydraulic

stress to the corresponding hydraulic strain is

called bulk modulus. It is denoted by symbol B.

B = – p/(∆V/V) (9.13)

The negative sign indicates the fact that with

an increase in pressure, a decrease in volume

occurs. That is, if p is positive, ∆V is negative.

Thus for a system in equilibrium, the value of

bulk modulus B is always positive. SI unit of

bulk modulus is the same as that of pressure

i.e., N m–2 or Pa. The bulk moduli of a few

common materials are given in Table 9.3.

The reciprocal of the bulk modulus is called

compressibility and is denoted by k. It is defined

as the fractional change in volume per unit

increase in pressure.

k = (1/B) = – (1/∆p) × (∆V/V) (9.14)

It can be seen from the data given in Table

9.3 that the bulk moduli for solids are much

larger than for liquids, which are again much

larger than the bulk modulus for gases (air).

aaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaa
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Gases have large compressibilities, which vary

with pressure and temperature. The

incompressibility of the solids is primarily due

to the tight coupling between the neighbouring

atoms. The molecules in liquids are also bound

with their neighbours but not as strong as in

solids. Molecules in gases are very poorly

coupled to their neighbours.

Table 9.4 shows the various types of stress,

strain, elastic moduli, and the applicable state

of matter at a glance.

Example 9.5 The average depth of Indian
Ocean is about 3000 m. Calculate the
fractional compression, ∆V/V, of water at
the bottom of the ocean, given that the bulk
modulus of water is 2.2 ××××× 109 N m–2. (Take

g  = 10 m s–2)

Answer   The pressure exerted by a  3000 m

column of water on the bottom layer

p = hρ g  = 3000 m  × 1000 kg m–3 × 10 m s–2

= 3  × 107 kg m–1 s-2

= 3  × 107 N m–2

Fractional compression ∆V/V, is

∆V/V  =  stress/B  = (3 × 107 N m-2)/(2.2 × 109 N m–2)

= 1.36 × 10-2 or  1.36 %    t

Table 9.3 Bulk moduli (B) of some common

Materials

Material B (109 N m–2 or GPa)
Solids

Aluminium 72

Brass 61

Copper 140

Glass 37

Iron 100

Nickel 260

Steel 160

Liquids

Water 2.2

Ethanol 0.9

Carbon disulphide 1.56

Glycerine 4.76

Mercury 25

Gases

Air (at STP) 1.0 × 10–4

Thus, solids are the least compressible, whereas,

gases are the most compressible. Gases are about

a million times more compressible than solids!

Table 9.4 Stress, strain and various elastic moduli

Type of Stress Strain     Change in Elastic  Name of State of

stress  shape  volume Modulus  Modulus Matter

 Tensile Two equal and Elongation or  Yes No           Y = (F×L)/  Young’s Solid
  or opposite forces compression    (A×∆L)  modulus
 compressive perpendicular to parallel to force
 (σ = F/A) opposite faces direction (∆L/L)

(longitudinal strain)

 Shearing Two equal and Pure shear, θ  Yes No        G = F/(A×θ)  Shear Solid
 (σ

s
 = F/A) opposite forces  modulus

parallel to oppoiste  or modulus
surfaces forces  of rigidity
in each case such
that total force and
total torque on the
body vanishes

 Hydraulic Forces perpendicular Volume change   No Yes      B = –p/(∆V/V)  Bulk Solid, liquid
everywhere to the (compression or  modulus and gas
surface, force per elongation)
unit area (pressure) (∆V/V)
same everywhere.
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9.6.5 POISSON’S RATIO

Careful observations with the Young’s modulus
experiment (explained in section 9.6.2), show
that there is also a slight reduction in the cross-
section (or in the diameter) of the wire. The strain
perpendicular to the applied force is called
lateral strain. Simon Poisson pointed out that
within the elastic limit, lateral strain is directly
proportional to the longitudinal strain. The ratio
of the lateral strain to the longitudinal strain in
a stretched wire is called Poisson’s ratio. If the
original diameter of the wire is d and the
contraction of the diameter under stress is ∆d,
the lateral strain is ∆d/d. If the original length
of the wire is L and the elongation under stress
is ∆L, the longitudinal strain is ∆L/L. Poisson’s
ratio is then (∆d/d)/(∆L/L) or (∆d/∆L) × (L/d).
Poisson’s ratio is a ratio of two strains; it is a
pure number and has no dimensions or units.
Its value depends only on the nature of material.
For steels the value is between 0.28 and 0.30,
and for aluminium alloys it is about 0.33.

9.6.6 Elastic Potential Energy
in a Stretched Wire

When a wire is put under a tensile stress, work
is done against the inter-atomic forces. This
work is stored in the wire in the form of elastic
potential energy. When a wire of original length
L and area of cross-section A is subjected to a
deforming force F along the length of the wire,
let the length of the wire be elongated by l. Then
from Eq. (9.8), we have F = YA × (l/L). Here Y is
the Young’s modulus of the material of the wire.
Now for a further elongation of infinitesimal
small length dl, work done dW is F × dl or YAldl/

L. Therefore, the amount of work done (W) in
increasing the length of the wire from L to L + l,
that is from l = 0 to l = l is

      W = = ×∫
0

2

2

l YAl YA l
dl

L L

      W = 
 

× × × 
 

2
1

2

l
Y AL

L

= 
1

2
×  Young’s modulus × strain2 ×

         volume of the wire

= 
1

2
×  stress × strain × volume of the

          wire

This work is stored in the wire in the form of

elastic potential energy (U). Therefore the elastic

potential energy per unit volume of the wire (u) is

       u = 
1

2
× σ ε (9.15)

9.7 APPLICATIONS OF ELASTIC
BEHAVIOUR OF MATERIALS

The elastic behaviour of materials plays an
important role in everyday life. All engineering
designs require precise knowledge of the elastic
behaviour of materials. For example while
designing a building, the structural design of
the columns, beams and supports require
knowledge of strength of materials used. Have
you ever thought why the beams used in
construction of bridges, as supports etc. have
a cross-section of the type I? Why does a heap
of sand or a hill have a pyramidal shape?
Answers to these questions can be obtained
from the study of structural engineering which
is based on concepts developed here.

Cranes used for lifting and moving heavy
loads from one place to another have a thick
metal rope to which the load is attached. The
rope is pulled up using pulleys and motors.
Suppose we want to make a crane, which has
a lifting capacity of 10 tonnes or metric tons (1
metric ton = 1000 kg). How thick should the
steel rope be? We obviously want that the load
does not deform the rope permanently.
Therefore, the extension should not exceed the
elastic limit. From Table 9.1, we find that mild
steel has a yield strength (σ

y
) of about 300 ×

106 N m–2. Thus, the area of cross-section (A)
of the rope should at least be

A ≥ W/σy  =  Mg/σy (9.16)

=  (104 kg × 9.8 m s-2)/(300 × 106 N m-2)
=  3.3 × 10-4 m2

corresponding to a radius of about 1 cm for
a rope of circular cross-section. Generally
a large margin of safety (of about a factor of
ten in the load) is provided. Thus a thicker
rope of radius about 3 cm is recommended.
A single wire of this radius would practically
be a rigid rod. So the ropes are always made
of a number of thin wires braided together,
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like in pigtails, for ease in manufacture,
flexibility and strength.

A bridge has to be designed such that it can
withstand the load of the flowing traffic, the force
of winds and its own weight. Similarly, in the
design of buildings the use of beams and columns
is very common. In both the cases, the
overcoming of the problem of bending of beam
under a load is of prime importance. The beam
should not bend too much or break. Let us
consider the case of a beam loaded at the centre
and supported near its ends as shown in
Fig. 9.8.  A bar of length l, breadth b, and depth d
when loaded at the centre by a load W sags by
an amount given by

δ = W l3/(4bd 3Y) (9.17)

Fig. 9.8 A beam supported at the ends and loaded

at the centre.

This relation can be derived using what you

have already learnt and a little calculus. From

Eq. (9.16), we see that to reduce the bending

for a given load, one should use a material with

a large Young’s modulus Y. For a given material,

increasing the depth d rather than the breadth

b is more effective in reducing the bending, since

δ  is proportional to d -3 and only to b-1(of course

the length l of the span should be as small as

possible). But on increasing the depth, unless

the load is exactly at the right place (difficult to

arrange in a bridge with moving traffic), the

deep bar  may bend as shown in Fig. 9.9(b). This

is called buckling. To avoid this, a common

compromise is the cross-sectional shape shown

in Fig. 9.9(c). This section provides a large load-

bearing surface and enough depth to prevent

bending. This shape reduces the weight of the

beam without sacrificing the strength and

hence reduces the cost.

(a) (b) (c)

Fig. 9.9 Different cross-sectional shapes of a beam.

(a) Rectangular section of a bar;

(b) A thin bar and how it can buckle;

(c) Commonly used section for a load

bearing bar.

The use of pillars or columns is also very
common in buildings and bridges. A pillar with
rounded ends as shown in Fig. 9.10(a) supports
less load than that with a distributed shape at
the ends [Fig. 9.10(b)]. The precise design of a
bridge or a building has to take into account
the conditions under which it will function, the
cost and long period, reliability of usable
material, etc.

                    (a)                         (b)

Fig. 9.10 Pillars or columns: (a) a pillar with rounded

ends, (b) Pillar with distributed ends.

The answer to the question why the maximum
height of a mountain on earth is ~10 km can
also be provided by considering the elastic
properties of rocks. A mountain base is not under
uniform compression and this provides some
shearing stress to the rocks under which they
can flow. The stress due to all the material on
the top should be less than the critical shearing
stress at which the rocks flow.

At the bottom of a mountain of height h, the
force per unit area due to the weight of the
mountain is hρg where ρ is the density of the
material of the mountain and g is the acceleration
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SUMMARY

1. Stress is the restoring force per unit area and strain is the fractional change in dimension.
In general there are three types of stresses (a) tensile stress — longitudinal stress
(associated with stretching) or compressive stress (associated with compression),
(b) shearing stress, and (c) hydraulic stress.

2. For small deformations, stress is directly proportional to the strain for many materials.
This is known as Hooke’s law. The constant of proportionality is called modulus of
elasticity. Three elastic moduli viz., Young’s modulus, shear modulus and bulk modulus
are used to describe the elastic behaviour of objects as they respond to deforming forces
that act on them.
A class of solids called elastomers does not obey Hooke’s law.

3. When an object is under tension or compression, the Hooke’s law takes the form
 F/A  = Y∆L/L

where  ∆L/L is the tensile or compressive strain of the object, F is the magnitude of the
applied force causing the strain, A is the cross-sectional area over which F is applied
(perpendicular to A) and Y is the Young’s modulus for the object. The stress is F/A.

4. A pair of forces when applied parallel to the upper and lower faces, the solid deforms so
that the upper face moves sideways with respect to the lower. The horizontal displacement
∆L of the upper face is perpendicular to the vertical height L. This type of deformation is
called shear and the corresponding stress is the shearing stress. This type of stress is
possible only in solids.
In this kind of deformation the Hooke’s law takes the form

F/A = G × ∆L/L

where ∆L is the displacement of one end of object in the direction of the applied force F,
and G is the shear modulus.

5. When an object undergoes hydraulic compression due to a stress exerted by a surrounding
fluid, the Hooke’s law takes the form

p = B (∆V/V),
where p is the pressure (hydraulic stress) on the object due to the fluid, ∆V/V  (the
volume strain) is the absolute fractional change in the object’s volume due to that

pressure and B is the bulk modulus of the object.

POINTS TO PONDER

1. In the case of a wire, suspended from celing and stretched under the action of a weight (F)

suspended from its other end, the force exerted by the ceiling on it is  equal and opposite

to the weight. However, the tension at any cross-section A of the wire is just F and not

2F. Hence, tensile stress which is equal to the tension per unit area is equal to F/A.

2. Hooke’s law is valid only in the linear part of stress-strain curve.

3. The Young’s modulus and shear modulus are relevant only for solids since only solids

have lengths and shapes.

4. Bulk modulus is relevant for solids, liquid and gases.  It refers to the change in volume

when every part of the body is under the uniform stress so that the shape of the body

remains unchanged.

due to gravity. The material at the bottom
experiences this force in the vertical direction,
and the sides of the mountain are free. Therefore,
this is not a case of pressure or bulk compression.
There is a shear component, approximately hρg
itself. Now the elastic limit for a typical rock is

30 × 107 N m-2. Equating this to hρg, with
ρ  = 3 × 103 kg m-3 gives

hρg  = 30 × 107 N m-2 .
h      =  30 × 107 N m-2/(3 × 103 kg m-3 × 10 m s-2)
      = 10 km

which is more than the height of Mt. Everest!
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5. Metals have larger values of Young’s modulus than alloys and elastomers. A material

with large value of Young’s modulus requires a large force to produce small changes in

its length.

6. In daily life, we feel that a material which stretches more is more elastic, but it a is

misnomer. In fact material which stretches to a lesser extent for a given load is considered

to be more elastic.

7. In general, a deforming force in one direction can produce strains in other directions

also. The proportionality between stress and strain in such situations cannot be described

by just one elastic constant.  For example, for a wire under longitudinal strain, the

lateral dimensions (radius of cross section) will undergo a small change, which is described

by another elastic constant of the material (called Poisson ratio).

8. Stress is not a vector quantity since, unlike a force, the stress cannot be assigned a

specific direction. Force acting on the portion of a body on a specified side of a section

has a definite direction.

EXERCISES

9.1 A steel wire of length 4.7 m and cross-sectional area 3.0 × 10-5 m2 stretches by the same
amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 × 10–5 m2 under
a given load. What is the ratio of the Young’s modulus of steel to that of copper?

9.2 Figure 9.11 shows the strain-stress curve for a given material. What are (a) Young’s
modulus and (b) approximate yield strength for this material?

Fig. 9.11
9.3 The stress-strain graphs for materials A and B are shown in Fig. 9.12.

Fig. 9.12
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The graphs are drawn to the same scale.
(a) Which of the materials has the greater Young’s modulus?
(b) Which of the two is the stronger material?

9.4 Read the following two statements below carefully and state, with reasons, if it is true
or false.
(a) The Young’s modulus of rubber is greater than that of steel;
(b) The stretching of a coil is determined by its shear modulus.

9.5 Two wires of diameter 0.25 cm, one made of steel and the other made of brass are
loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of
brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.

Fig. 9.13
9.6 The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a

vertical wall. A mass of 100 kg is then attached to the opposite face of the cube. The
shear modulus of aluminium is 25 GPa. What is the vertical deflection of this face?

9.7 Four identical hollow cylindrical columns of mild steel support a big structure of mass
50,000 kg. The inner and outer radii of each column are 30 and 60 cm respectively.
Assuming the load distribution to be uniform, calculate the compressional strain of
each column.

9.8 A piece of copper having a rectangular cross-section of 15.2 mm × 19.1 mm is pulled in
tension with 44,500 N force, producing only elastic deformation. Calculate the resulting
strain?

9.9 A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum
stress is not to exceed 108 N m–2, what is the maximum load the cable can support ?

9.10 A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long.
Those at each end are of copper and the middle one is of iron. Determine the ratios of
their diameters if each is to have the same tension.

9.11 A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is
whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle.
The cross-sectional area of the wire is 0.065 cm2. Calculate the elongation of the wire
when the mass is at the lowest point of its path.

9.12 Compute the bulk modulus of water from the following data: Initial volume = 100.0
litre, Pressure increase = 100.0 atm (1 atm = 1.013 × 105 Pa), Final volume = 100.5
litre. Compare the bulk modulus of water with that of air (at constant temperature).
Explain in simple terms why the ratio is so large.

9.13 What is the density of water at a depth where pressure is 80.0 atm, given that its
density at the surface is 1.03 × 103 kg m–3?

9.14 Compute the fractional change in volume of a  glass slab, when subjected to a hydraulic
pressure of 10 atm.

9.15 Determine the volume contraction of a solid copper cube, 10 cm on an edge, when
subjected to a hydraulic pressure of 7.0 × 106 Pa.

9.16 How much should the pressure on a litre of water be changed to compress it by 0.10%?
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Additional Exercises

9.17 Anvils made of single crystals of diamond, with the shape as shown in
Fig. 9.14, are used to investigate behaviour of materials under very high pressures. Flat
faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends are
subjected to a compressional force of 50,000 N. What is the pressure at the tip of the anvil?

Fig. 9.14
9.18 A rod of length 1.05 m having negligible mass is supported at its ends by two wires of

steel (wire A) and aluminium (wire B) of equal lengths as shown in
Fig. 9.15. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2,
respectively. At what point along the rod should a mass m be suspended in order to
produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.

Fig. 9.15

9.19 A mild steel wire of length 1.0 m and cross-sectional area 0.50 × 10-2 cm2 is
stretched, well within its elastic limit, horizontally between two pillars. A mass of 100

g is suspended from the mid-point of the wire. Calculate the depression at the mid-
point.

9.20 Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0
mm. What is the maximum tension that can be exerted by the riveted strip if the
shearing stress on the rivet is not to exceed 6.9 × 107 Pa? Assume that each rivet is to
carry one quarter of the load.

9.21 The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven
km beneath the surface of water. The water pressure at the bottom of the trench is
about 1.1 × 108 Pa. A steel ball of initial volume 0.32 m3 is dropped into the ocean and
falls to the bottom of the trench. What is the change in the volume of the ball when it
reaches to the bottom?
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CHAPTER TEN

MECHANICAL PROPERTIES OF FLUIDS

10.1 INTRODUCTION

In this chapter, we shall study  some common physical
properties of liquids and gases. Liquids and gases can  flow
and are therefore, called  fluids.  It is this property that
distinguishes liquids and gases from solids in a basic way.

Fluids are everywhere around us. Earth has an envelop of
air and two-thirds of its surface is covered with water.  Water
is not only necessary for our existence; every mammalian
body constitute mostly of water. All the  processes occurring
in living beings including plants are mediated by fluids. Thus
understanding the behaviour and properties of fluids is
important.

How are fluids different from solids? What is common in
liquids and gases? Unlike  a solid, a fluid has no definite
shape of its own. Solids and liquids have a fixed volume,
whereas a gas fills the entire volume of its container. We
have learnt in the previous chapter that the volume of solids
can be changed by stress. The volume of solid, liquid or gas
depends on the stress or pressure acting on it. When we
talk about fixed volume of solid or liquid, we mean its volume
under atmospheric pressure. The difference between gases
and solids or liquids is that for solids or liquids the change
in volume due to  change of external pressure is rather small.
In other words solids and liquids have much lower
compressibility as compared to gases.

Shear stress can change the shape of a solid keeping its
volume fixed. The key property of fluids is that they offer
very little resistance to shear stress; their shape changes by
application of very small shear stress. The shearing stress
of fluids is about million times smaller than that of solids.

10.2  PRESSURE

A sharp needle when pressed against our skin pierces it. Our
skin, however, remains intact when a blunt object with a
wider contact area (say the back of a spoon) is pressed against
it with the same force. If an elephant were to step on a man’s
chest, his ribs would crack. A circus performer across whose

10.1 Introduction

10.2 Pressure

10.3 Streamline flow

10.4 Bernoulli’s principle

10.5 Viscosity

10.6 Surface tension

Summary

Points to ponder

Exercises

Additional exercises

Appendix
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chest a large, light but strong wooden plank is
placed first, is saved from this accident. Such
everyday experiences convince us that both the
force and its coverage area are important. Smaller
the area on which the force acts, greater is the
impact. This impact is known as pressure.

When an object is submerged in a fluid at
rest, the fluid exerts a force on its surface. This
force is always normal to the object’s surface.
This is so because if there were a component of
force parallel to the surface, the object will also
exert a force on the fluid parallel to it; as a
consequence of Newton’s third law. This force
will cause the fluid to flow parallel to the surface.
Since the fluid is at rest, this cannot happen.
Hence, the force exerted by the fluid at rest has
to be perpendicular to the surface in contact
with it. This is shown in Fig.10.1(a).

The normal force exerted by the fluid at a point
may be measured. An idealised form of one such
pressure-measuring device is shown in Fig.
10.1(b). It consists of an evacuated chamber with
a spring that is calibrated to measure the force
acting on the piston. This device is placed at a
point inside the fluid. The inward force exerted
by the fluid on the piston is balanced by the
outward spring force and is thereby measured.

If F is the magnitude of this normal force on the
piston of area A then the average pressure Pav

is defined as the normal force acting per unit
area.

P
F

Aav =              (10.1)

In principle, the piston area can be made
arbitrarily small. The pressure is then defined
in a limiting sense as

P = 
lim

∆A 0→

∆

∆

F

A
(10.2)

Pressure is a scalar quantity. We remind the
reader that it is the component of the force
normal to the area under consideration and not
the (vector) force that appears in the numerator
in Eqs. (10.1) and (10.2). Its dimensions are
[ML–1T–2]. The SI unit of pressure is N m–2. It has
been named as pascal (Pa) in honour of the
French scientist Blaise Pascal (1623-1662) who
carried out pioneering studies on fluid pressure.
A common unit of pressure is the atmosphere
(atm), i.e. the pressure exerted by the
atmosphere at sea level (1 atm = 1.013 ×  105 Pa).

Another quantity, that is indispensable in
describing fluids, is the density ρ. For a fluid of
mass m occupying volume V,

ρ =
m

V
(10.3)

The dimensions of density are [ML–3]. Its SI
unit is kg m–3. It is a positive scalar quantity. A
liquid is largely incompressible and its density
is therefore, nearly constant at all pressures.
Gases, on the other hand exhibit a large
variation in densities with pressure.

The density of water at 4oC (277 K) is
1.0 ×  103 kg m–3. The relative density of a
substance is the ratio of its density to the
density of water at 4oC. It is a dimensionless
positive scalar quantity. For example the relative
density of aluminium is 2.7. Its density is
2.7 ×  103 kg m–3

.  The densities of some common
fluids are displayed in Table 10.1.

Table 10.1 Densities of some common fluids

at STP*(a) (b)
Fig. 10.1 (a) The force exerted by the liquid in the

beaker on the submerged object or on the

walls is normal (perpendicular) to the

surface at all points.

(b) An idealised device for measuring

pressure.

* STP means standard temperature (00C) and 1 atm pressure.
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Example 10.1   The two thigh bones
(femurs), each of cross-sectional area10 cm2

support the upper part of a human body of
mass 40 kg. Estimate the average pressure
sustained by the femurs.

Answer   Total cross-sectional area of the
femurs is A = 2 ×  10 cm2 = 20 ×  10–4 m2. The
force acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s–2). This force is acting
vertically down and hence, normally on the
femurs. Thus, the average pressure is

25 m N 10  2    −×==
A

F
Pav                             t

10.2.1 Pascal’s Law

The French scientist Blaise Pascal observed that
the pressure in a fluid at rest is the same at all
points if they are at the same height. This fact
may be demonstrated in a simple way.

Fig. 10.2 shows an element in the interior of
a fluid at rest. This element ABC-DEF is in the
form of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be considered at the same depth
from the liquid surface and therefore, the effect
of the gravity is the same at all these points.
But for clarity we have enlarged this element.
The forces on this element are those exerted by
the rest of the fluid and they must be normal to
the surfaces of the element as discussed above.
Thus, the fluid exerts pressures P

a
, P

b 
and P

c
 on

this element of area corresponding to the normal
forces F

a
, F

b
 and F

c
 as shown in Fig. 10.2 on the

faces BEFC, ADFC and ADEB denoted by A
a
, A

b

and A
c
 respectively. Then

F
b 
sinθ = F

c
, F

b 
cosθ = F

a
(by equilibrium)

A
b 
sinθ = A

c
, A

b 
cosθ = A

a
(by geometry)

Thus,

;b c a
b c a

b c a

F F F
P P P

A A A
= = = = (10.4)

Hence, pressure exerted is same in all
directions in a fluid at rest. It again reminds us
that like other types of stress, pressure is not a
vector quantity. No direction can be assigned
to it.  The force against any area within (or
bounding) a fluid at rest and under pressure is
normal to the area, regardless of the orientation
of the area.

Now consider a fluid element in the form of a
horizontal bar of uniform cross-section. The bar
is in equilibrium. The horizontal forces exerted
at its two ends  must be balanced or the
pressure at the two ends should be equal. This
proves that for a liquid in equilibrium the
pressure is same at all points in a horizontal
plane. Suppose the pressure were not equal in
different parts of the fluid, then there would be
a flow as the  fluid will have some net force
acting on it. Hence in the absence of flow the
pressure in the fluid must be same everywhere
in a horizontal plane.

10.2.2 Variation of Pressure with Depth

Consider a fluid at rest in a container. In
Fig. 10.3 point 1 is at height h above a point 2.
The pressures at points 1 and 2 are P

1
 and P

2

respectively. Consider a cylindrical element of
fluid having area of base A and height h. As the
fluid is at rest the resultant horizontal forces
should be zero and the resultant vertical forces
should balance the weight of the element. The
forces acting in the vertical direction are due to
the fluid pressure at the top (P

1
A) acting

downward, at the bottom (P
2
A) acting upward.

If mg is weight of the fluid in the cylinder we
have

(P
2 

− P
1
) A = mg (10.5)

Now, if ρ is the mass density of the fluid, we
have the mass of fluid to be m = ρV= ρhA so
that

P
2 

−
 
P

1
=  ρgh (10.6)

Fig. 10.2 Proof of Pascal’s law. ABC-DEF is an

element of the interior of a fluid at rest.

This element is in the form of a right-

angled prism. The element is small so that

the effect of gravity can be ignored, but it

has been enlarged for the sake of clarity.
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Fig.10.3 Fluid under gravity. The effect of gravity is

illustrated through pressure on a vertical

cylindrical column.

Pressure difference depends on the vertical

distance h between the points (1 and 2), mass

density of the fluid ρ and acceleration due to

gravity g. If the point 1 under discussion is

shifted to the top of the  fluid (say, water), which

is open to the atmosphere, P
1
 may be replaced

by atmospheric pressure (P
a
) and we replace P

2

by P. Then Eq. (10.6) gives

P =
 
P

a 
+ ρgh (10.7)

Thus, the pressure P, at depth below the

surface of a liquid open to the atmosphere is

greater than atmospheric pressure by an

amount ρgh. The excess of pressure, P −
 
P

a
, at

depth h is called a gauge pressure at that point.

The area of the cylinder is not appearing in

the expression of absolute pressure in Eq. (10.7).

Thus, the height of the fluid column is important

and not cross-sectional or base area or the shape

of the container. The liquid pressure is the same

at all points at the same horizontal level (same

depth).  The result is appreciated through the

example of hydrostatic paradox. Consider three

vessels A, B and C  [Fig.10.4] of different shapes.

They are connected at the bottom by a horizontal

pipe. On filling with water, the level in the three

vessels is the same, though they hold different

amounts of water. This is so because water at

the bottom has the same pressure below each

section of the vessel.

Fig 10.4 Illustration of hydrostatic paradox. The

three vessels A, B and C contain different

amounts of liquids, all upto the same

height.

Example 10.2 What is the pressure on a
swimmer 10 m below the surface of a lake?

Answer Here
h = 10 m and ρ = 1000 kg m-3. Take g = 10 m s–2

From Eq. (10.7)
P =

 
P

a 
+ ρgh

   = 1.01 × 105 Pa + 1000 kg m–3 × 10 m s–2 × 10 m
   = 2.01 × 105 Pa
    ≈ 2 atm

This is a 100% increase in pressure from
surface level. At a depth of 1 km, the increase
in pressure is 100 atm! Submarines are designed
to withstand such enormous pressures.   t

10.2.3 Atmospheric Pressure and
Gauge Pressure

The pressure of the atmosphere at any point is
equal to the weight of a column of air of unit
cross-sectional area extending from that point
to the top of the atmosphere. At sea level, it is
1.013 × 105 Pa (1 atm). Italian scientist
Evangelista Torricelli (1608–1647) devised for
the first time a method for measuring
atmospheric pressure. A long glass tube closed
at one end and filled with mercury is inverted
into a trough of mercury as shown in Fig.10.5 (a).
This device is known as ‘mercury barometer’.
The space above the mercury column in the tube
contains only mercury vapour whose pressure
P is so small  that it may be neglected. Thus,
the pressure at Point A=0. The pressure inside
the coloumn at Point B must be the same as the
pressure at Point C, which is atmospheric
pressure, Pa.

P
a 
= ρgh (10.8)

where ρ is the density of mercury and h is the
height of the mercury column in the tube.
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In the experiment it is found that the mercury
column in the barometer has a height of about
76 cm at sea level equivalent to one atmosphere
(1 atm). This can also be obtained using the
value of ρ in Eq. (10.8). A common way of stating
pressure is in terms of cm or mm of mercury
(Hg). A pressure equivalent of 1 mm is called a
torr (after Torricelli).

1 torr = 133 Pa.
The mm of Hg and torr are used in medicine

and physiology. In meteorology, a common unit
is the bar and millibar.

1 bar = 105 Pa
An open tube manometer is a useful

instrument for measuring pressure differences.
It consists of a U-tube containing a suitable
liquid i.e., a low density liquid (such as oil) for
measuring small pressure differences and a
high density liquid (such as mercury) for large
pressure differences. One end of the tube is open
to the atmosphere and the other end is
connected to the system whose pressure we want
to measure [see Fig. 10.5 (b)]. The pressure P at
A is equal to pressure at point B. What we
normally measure is the gauge pressure, which
is P − P

a
, given by Eq. (10.8) and is proportional

to manometer height h.

Pressure is same at the same level on both
sides of the U-tube containing a fluid. For
liquids, the density varies very little over wide
ranges in pressure and temperature and we can
treat it safely as a constant for our present
purposes. Gases on the other hand, exhibits
large variations of densities with changes in
pressure and temperature. Unlike gases, liquids
are, therefore, largely treated as incompressible.

Example 10.3 The density of the
atmosphere at sea level is 1.29 kg/m3.
Assume that it does not change with
altitude. Then how high would the
atmosphere extend?

Answer We use Eq. (10.7)

ρgh  =  1.29 kg m–3 × 9.8 m s2 × h  m = 1.01 × 105 Pa

∴ h = 7989 m ≈ 8 km

In reality the density of air decreases with

height. So does the value of g. The atmospheric

cover extends with decreasing pressure over

100 km. We should also note that the sea level

atmospheric pressure is not always 760 mm of

Hg. A drop in the Hg level by 10 mm or more is a

sign of an approaching storm. t

Example 10.4 At a depth of 1000 m in an
ocean (a) what is the absolute pressure?
(b) What is the gauge pressure? (c) Find
the force acting on the window of area
20 cm × 20 cm of a submarine at this depth,
the interior of which is maintained at sea-
level atmospheric pressure. (The density of
sea water is 1.03 × 103 kg m -3,
g = 10 m s–2.)

(b) The open tube manometer

Fig 10.5  Two pressure measuring devices.

Fig 10.5 (a) The mercury barometer.
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Answer Here h = 1000 m and ρ = 1.03 ×  103 kg m-3.
(a) From Eq. (10.6), absolute pressure

P =
 
P

a 
+ ρgh

= 1.01 ×  105 Pa
   + 1.03 ×  103 kg m–3  × 10 m s–2 ×  1000 m
=  104.01 ×  105 Pa
≈  104 atm

(b) Gauge pressure is P −
 
P

a 
= ρgh = P

g

P
g
 = 1.03 ×  103 kg m–3 ×  10 ms2 ×  1000 m

    = 103 ×  105 Pa
     ≈ 103 atm

(c) The pressure outside the submarine is
P =

 
P

a 
+ ρgh and the pressure inside it is P

a
.

Hence, the net pressure acting on the
window is gauge pressure, P

g
 = ρgh. Since

the area of the window is A = 0.04 m2, the
force acting on it is
F = P

g
 A = 103 ×  105 Pa ×  0.04 m2 = 4.12 ×  105 N

  t

10.2.4  Hydraulic Machines

Let us now consider what happens when we
change the pressure on a fluid contained in a
vessel. Consider a horizontal cylinder with a

piston and three vertical tubes at different

points [Fig. 10.6 (a)]. The pressure in the

horizontal cylinder is indicated by the height of

liquid column in the vertical tubes. It is necessarily

the same in all. If we push the piston, the fluid level

rises in all the tubes, again reaching the same level
in each one of them.

     This indicates that when the pressure  on the
cylinder was increased, it was distributed
uniformly throughout. We can say  whenever
external pressure is applied on any part of a
fluid contained in a vessel, it is transmitted
undiminished and equally in all directions.
This is another form of the Pascal’s law and it
has many applications in daily life.

A number of devices, such as hydraulic lift
and hydraulic brakes, are based on the Pascal’s
law. In these devices, fluids are used for
transmitting pressure. In a hydraulic lift, as
shown in Fig. 10.6 (b), two pistons are separated
by the space filled with a liquid. A piston of small
cross-section A

1
 is used to exert a force F

1
 directly

on the liquid. The pressure P = 
1

1

F

A  is

transmitted throughout the liquid to the larger
cylinder attached with a larger piston of area A

2
,

which results in an upward force of P × A
2
.

Therefore, the piston is capable of supporting a
large force (large weight of, say a car, or a truck,

Archemedes’ Principle
Fluid appears to provide partial support to the objects placed in it.  When a body is wholly or partially
immersed in a fluid at rest, the fluid exerts pressure on the surface of the body in contact with the
fluid. The pressure is greater on lower surfaces of the body than on the upper surfaces as pressure in
a fluid increases with depth. The resultant of all the forces is an upward force called buoyant force.
Suppose that a cylindrical body is immersed in the fluid. The upward force on the bottom of the body
is more than the downward force on its top. The fluid exerts a resultant upward force or buoyant force

on the body equal to (P
2 
– P

1
) ×××××      A (Fig. 10.3). We have seen in equation 10.4 that (P

2
-P

1
)A = ρghA. Now,

hA is the volume of the solid and  ρhA is the weight of an equivaliant volume of the fluid. (P
2
-P

1
)A = mg.

Thus, the upward force exerted is equal to the weight of the displaced fluid.
The result holds true irrespective of the shape of the object and here cylindrical object is considered

only for convenience. This is Archimedes’ principle. For totally immersed objects the volume of the
fluid displaced by the object is equal to its own volume. If the density of the immersed object is more
than that of the fluid, the object will sink as the weight of the body is more than the upward thrust. If
the density of the object is less than that of the fluid, it floats in the fluid partially submerged. To
calculate the volume submerged, suppose the total volume of the object is V

s
 and  a part V

p 
of it is

submerged  in the fluid.  Then, the upward force which is the weight of the displaced fluid is ρ
f
gV

p
,

which must equal the weight of the body; ρ
s
gV

s
 = ρ

f
gV

p
or  ρ

s
/ρ

f
 = V

p
/V

s 
 The apparent weight of the

floating body is zero.
This principle can be summarised as; ‘the loss of weight of a body submerged (partially or fully) in

a fluid is equal to the weight of the fluid displaced’.

Fig 10.6  (a) Whenever external pressure is applied

   on any part of a fluid in a vessel, it is

equally transmitted in all directions.
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t

t

placed on the platform) F
2 

= PA
2 

= 
1 2

1

F A

A . By

changing the force at A
1
, the platform can be

moved up or down. Thus, the applied force has

been increased by a factor of 
2

1

A

A  and this factor

is the mechanical advantage of the device. The
example below clarifies it.

Fig 10.6 (b) Schematic diagram illustrating the principle

  behind the hydraulic lift, a device used to

  lift heavy loads.

Example 10.5 Two syringes of different
cross-sections (without needles) filled with
water are connected with a tightly fitted
rubber tube filled with water. Diameters of
the smaller piston and larger piston are 1.0
cm and 3.0 cm respectively. (a)  Find the
force exerted on  the larger piston when a
force of 10 N is applied to the smaller piston.
(b) If the smaller piston is pushed in through
6.0 cm, how much does the larger piston
move out?

Answer (a) Since pressure is transmitted
undiminished throughout the fluid,

( )
( )

2–2

2
2 1 2–2

1

3/2 10 m
10 N

1/2 10 m

A
F F

A

π

π

×
= = ×

×

             = 90 N

(b) Water is considered to be perfectly
incompressible. Volume covered by the
movement of smaller piston inwards is equal to
volume moved outwards due to the larger piston.

2211
ALAL =

       j 0.67 ×  10-2 m = 0.67 cm
Note, atmospheric pressure is common to both
pistons and has been ignored. t

Example 10.6 In a car lift compressed air
exerts a force F

1
 on a small piston having

a radius of 5.0 cm. This pressure is
transmitted to a second piston of radius
15 cm (Fig 10.7). If the mass of the car to
be lifted is 1350 kg, calculate F

1
. What is

the pressure necessary to accomplish this
task? (g = 9.8 ms-2).

Answer Since pressure is transmitted
undiminished throughout the fluid,

= 1470 N

≈  1.5 ×  103 N
The air pressure that will produce this

force is

This is almost double the atmospheric
pressure.                       t

Hydraulic brakes in automobiles also work on
the same principle. When we apply a little force
on the pedal with our foot the master piston

Archimedes was a Greek philosopher, mathematician, scientist and engineer. He
invented the catapult and devised a system of pulleys and levers to handle heavy
loads. The king of his native city Syracuse, Hiero II, asked him to determine if his gold
crown was alloyed with some cheaper metal, such as silver without damaging the crown.
The partial loss of weight he experienced while lying in his bathtub suggested a solution

to him. According to legend, he ran naked through the streets of Syracuse, exclaiming “Eureka,
eureka!”, which means “I have found it, I have found it!”

Archimedes (287–212 B.C.)
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moves inside the master cylinder, and the
pressure caused is transmitted through the
brake oil to act on a piston of larger area. A large
force acts on the piston and is pushed down
expanding the brake shoes against brake lining.
In this way, a small force on the pedal produces
a large retarding force on the wheel. An
important advantage of the system is that the
pressure set up by pressing pedal is transmitted
equally to all cylinders attached to the four
wheels so that the braking effort is equal on
all wheels.

10.3  STREAMLINE FLOW

So far we have studied fluids at rest. The study

of the fluids in motion is known as fluid
dynamics. When a water tap is turned on slowly,

the water flow is smooth initially, but loses its

smoothness when the speed of the outflow is

increased. In studying the motion of fluids, we

focus our attention on what is happening to

various fluid particles at a particular point in
space at a particular time. The flow of the fluid

is said to be steady if at any given point, the

velocity of each passing fluid particle remains

constant in time. This does not mean that the

velocity at different points in space is same. The

velocity of a particular particle may change as it
moves from one point to another. That is, at some

other point the particle may have a different

velocity, but every other particle which passes

the second point behaves exactly as the previous

particle that has just passed that point. Each

particle follows a smooth path, and the paths of
the particles do not cross each other.

Fig. 10.7 The meaning of streamlines. (a) A typical

trajectory of a fluid particle.

(b) A region of streamline flow.

The path taken by a fluid particle under a
steady flow is a streamline. It is defined as a
curve whose tangent at any point is in the
direction of the fluid velocity at that point.
Consider the path of a particle as shown in
Fig.10.7 (a), the curve describes how a fluid
particle moves with time. The curve PQ is like a
permanent map of fluid flow, indicating how the
fluid streams. No two streamlines can cross, for
if they do, an oncoming fluid particle can go
either one way or the other and the flow would
not be steady. Hence, in steady flow, the map of
flow is stationary in time. How do we draw closely
spaced streamlines ? If we intend to show
streamline of every flowing particle, we would
end up with a continuum of lines. Consider planes
perpendicular to the direction of fluid flow e.g.,
at three points P, R and Q in Fig.10.7 (b). The
plane pieces are so chosen that their boundaries
be determined by the same set of streamlines.
This means that number of fluid particles
crossing the surfaces as indicated at P, R and Q
is the same. If area of cross-sections at these
points are A

P
,A

R
 and A

Q
 and speeds of fluid

particles are v
P
, v

R
 and v

Q
, then mass of fluid

∆m
P
 crossing at A

P
 in a small interval of time ∆t

is ρ
P
A

P
v

P 
∆t. Similarly mass of fluid ∆m

R
 flowing

or crossing at A
R
 in a small interval of time ∆t is

ρ
R
A

R
v

R 
∆t and mass of fluid  ∆m

Q
 is ρ

Q
A

Q
v

Q 
∆t

crossing at A
Q
. The mass of liquid flowing out

equals the mass flowing in, holds in all cases.
Therefore,

ρ
P
A

P
v

P
∆t = ρ

R
A

R
v

R
∆t = ρ

Q
A

Q
v

Q
∆t (10.9)

For flow of incompressible fluids
ρ

P
 = ρ

R
 = ρ

Q

Equation (10.9) reduces to
A

P
v

P
 = A

R
v

R
 = A

Q
v

Q
(10.10)

which is called the equation of continuity and
it is a statement of conservation of mass in flow
of incompressible fluids. In general

Av = constant (10.11)
Av gives the volume flux or flow rate and

remains constant throughout the pipe of flow.
Thus, at narrower portions where the
streamlines are closely spaced, velocity
increases and its vice versa. From (Fig 10.7b) it
is clear that A

R  
> A

Q 
or   v

R
 <  v

Q
, the fluid is

accelerated while passing from R to Q. This is
associated with a change in pressure in fluid
flow in horizontal pipes.

Steady flow is achieved at low flow speeds.
Beyond a limiting value, called critical speed,
this flow loses steadiness and becomes
turbulent. One sees this when a fast flowing
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stream encounters rocks, small foamy
whirlpool-like regions called ‘white water
rapids are formed.

Figure 10.8 displays streamlines for some
typical flows. For example, Fig. 10.8(a) describes
a laminar flow where the velocities at different
points in the fluid may have dif ferent
magnitudes but their directions are parallel.
Figure 10.8 (b) gives a sketch of turbulent flow.

Fig. 10.8 (a) Some streamlines for fluid flow.

(b) A jet of air striking a flat plate placed

perpendicular to it. This is an example

of turbulent flow.

10.4  BERNOULLI’S PRINCIPLE

Fluid flow is a complex phenomenon. But we
can obtain some useful properties for steady
or streamline flows using the conservation
of energy.

Consider a fluid moving in a pipe of varying
cross-sectional area. Let the pipe be at varying
heights as shown in Fig. 10.9. We now suppose
that an incompressible fluid is flowing through
the pipe in a steady flow. Its velocity must
change as a consequence of equation of
continuity. A force is required to produce this
acceleration, which is   caused by the fluid
surrounding it, the pressure must be different
in different regions. Bernoulli’s equation is a
general expression that relates the pressure
difference between two points in a pipe to both
velocity changes (kinetic energy change) and
elevation (height) changes (potential energy

change). The Swiss Physicist Daniel Bernoulli
developed this relationship in 1738.

Consider the flow at two regions 1 (i.e., BC)
and 2 (i.e., DE). Consider the fluid initially lying
between B and D. In an infinitesimal time
interval ∆t, this fluid would have moved. Suppose
v

1
 is the speed at B and v

2
 at D, then fluid initially

at B has moved a distance v
1
∆t to C (v

1
∆t is small

enough to assume constant cross-section along
BC). In the same interval ∆t the fluid initially at
D moves to E, a distance equal to v

2
∆t. Pressures

P
1
 and P

2
 act as shown on the plane faces of

areas A
1
 and A

2
 binding the two regions. The

work done on the fluid at left end (BC) is W
1
 =

P
1
A

1
(v

1
∆t) = P

1
∆V. Since the same volume ∆V

passes through both the regions (from the
equation of continuity) the work done by the fluid
at the other end (DE) is W

2
 = P

2
A

2
(v

2
∆t) = P

2
∆V or,

the work done on the fluid is  –P
2
∆V. So the total

work done on the fluid is
W

1
 – W

2 
=  (P

1
− P

2
) ∆V

Part of this work goes into changing the kinetic
energy of the fluid, and part goes into changing
the gravitational potential energy. If the density
of the fluid is ρ and ∆m = ρA

1
v

1
∆t = ρ∆V is the

mass passing through the pipe in time ∆t, then
change in gravitational potential energy is

∆U = ρg∆V (h
2 

− h
1
)

The change in its kinetic energy is

∆K = 

1

2

 
 
 

 ρ ∆V (v
2

2 − v
1
2)

We can employ the work – energy theorem
(Chapter 6) to this volume of the fluid and
this yields

(P
1
− P

2
) ∆V = 

1

2

 
 
 

 ρ ∆V (v
2
2 − v

1
2) + ρg∆V (h

2 
− h

1
)

We now divide each term by ∆V to obtain

(P
1
− P

2
) = 

1

2

 
 
 

 ρ (v
2
2 − v

1
2) + ρg (h

2 
− h

1
)

Daniel Bernoulli was a Swiss scientist and mathematician, who along with Leonard
Euler had the distinction of winning the French Academy prize for mathematics
10 times. He also studied medicine and served as a professor of anatomy and
botany for a while at Basle, Switzerland. His most well-known work was in
hydrodynamics, a subject he developed from a single principle: the conservation of
energy. His work included calculus, probability, the theory of vibrating strings,

and applied mathematics. He has been called the founder of mathematical physics.

Daniel Bernoulli (1700–1782)
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We can rearrange the above terms to obtain

P
1 
+ 

1

2

 
 
 

 ρv
1
2 + ρgh

1
 = P

2
+ 

1

2

 
 
 

 ρv
2
2 + ρgh

2

 (10.12)
This is Bernoulli’s equation. Since 1 and 2

refer to any two locations along the pipeline,
we may write the expression in general as

 P + 
1

2

 
 
 

ρv2 + ρgh = constant (10.13)

Fig. 10.9 The flow of an ideal fluid in a pipe of

varying cross section. The fluid in a

section of length v
1
∆t moves to the section

of length v
2
∆t in time ∆t.

In words, the Bernoulli’s relation may be
stated as follows: As we move along a streamline
the sum of the pressure (P ), the kinetic energy

per unit volume 
ρv2

2







 and the potential energy

per unit volume (ρgh) remains a constant.
Note that in applying the energy conservation

principle, there is an assumption that no energy
is lost due to friction. But in fact, when fluids
flow, some energy does get lost due to internal
friction. This arises due to the fact that in a
fluid flow, the different layers of the fluid flow
with different velocities. These layers exert
frictional forces on each other resulting in a loss
of energy. This property of the fluid is called
viscosity and is discussed in more detail in a
later section. The lost kinetic energy of the fluid
gets converted into heat energy. Thus,
Bernoulli’s equation ideally applies to fluids with

zero viscosity or non-viscous fluids. Another

restriction on application of Bernoulli theorem

is that the fluids must be incompressible, as

the elastic energy of the fluid is also not taken

into consideration. In practice, it has a large

number of useful applications and can help

explain a wide variety of phenomena for low

viscosity incompressible fluids.  Bernoulli’s

equation also does not hold for non-steady or

turbulent flows, because in that situation

velocity and pressure are constantly fluctuating

in time.

When a fluid is at rest i.e., its velocity is zero

everywhere, Bernoulli’s equation becomes

P
1
 + ρgh

1
 = P

2
 + ρgh

2

(P
1
− P

2
) = ρg (h

2 
− h

1
)

which is same as Eq. (10.6).

10.4.1 Speed of Efflux: Torricelli’s Law

The word efflux means fluid outflow. Torricelli
discovered that the speed of efflux from an open
tank is given by a formula identical to that of a
freely falling body. Consider a tank containing
a liquid of density ρ with a small hole in its side
at a height y

1
 from the bottom (see Fig. 10.10).

The air above the liquid, whose surface is at
height y

2
, is at pressure P. From the equation

of continuity [Eq. (10.10)] we have
v

1 
A

1
 = v

2 
A

2

v
A

A
v2

1

2

= 1

Fig. 10.10 Torricelli’s law. The speed of efflux, v
1
,

from the side of the container is given by

the application of Bernoulli’s equation.

If the container is open at the top to the

atmosphere then 1   2  hv g= .
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If the cross-sectional area of the tank A
2
 is

much larger than that of the hole (A
2
 >>A

1
), then

we may take the fluid to be approximately at rest
at the top, i.e., v

2
 = 0. Now, applying the Bernoulli

equation at points 1 and 2 and noting that at
the hole P

1
 = P

a
, the atmospheric pressure, we

have from Eq. (10.12)

2
1 1 2

1

2
aP  v g y P g y             + ρ + ρ = + ρ

Taking  y
2
 – y

1
 = h we have

( )2
2

a

1

P P
v g h     

−
= +

ρ
(10.14)

When P >>P
a 
and 2 g h may be ignored, the

speed of efflux is determined by the container
pressure. Such a situation occurs in rocket
propulsion. On the other hand, if the tank is
open to the atmosphere, then P  = P

a 
and

hgv    21 = (10.15)

This is also the speed of a freely falling body.
Equation (10.15) represents Torricelli’s law.

10.4.2 Venturi-meter

The Venturi-meter is a device to measure the
flow speed of incompressible fluid. It consists of
a tube with a broad diameter and a small
constriction at the middle as shown in
Fig. (10.11). A manometer in the form of a
U-tube is also attached to it, with one arm at
the broad neck point of the tube and the other
at constriction as shown in Fig. (10.11). The
manometer contains a liquid of density ρ

m
. The

speed v
1 
of the liquid flowing through the tube

at the broad neck area A is to be measured
from equation of continuity Eq. (10.10) the speed

at the constriction becomes 2 1
v v=

A

a
. Then

using Bernoulli’s equation (Eq.10.12) for (h
1
=h

2
),

we get

P
1
+ 

1

2
 ρv

1
2 = P

2
+

1

2
 ρv

1
2 (A/a)2

So that

P
1
- P

2
 = 

1

2
 ρv

1
2 

A

a



















2

1– (10.16)

This pressure difference causes the fluid in
the U-tube connected at the narrow neck to rise
in comparison to the other arm. The difference
in height h measure the pressure difference.

P
1
– P

2
 = ρ

m
gh = 

1

2
 ρv

1
2 

2

–1
A

a

  
  
   

So that the speed of fluid at wide neck is

v
1
= 

–½2
2

–1m gh A

a

ρ

ρ

    
         

(10.17)

The principle behind this meter has many
applications. The carburetor of automobile has
a Venturi channel (nozzle) through which air
flows with a high speed. The pressure is then
lowered at the narrow neck and the petrol
(gasoline) is sucked up in the chamber to provide
the correct mixture of air to fuel necessary for
combustion. Filter pumps or aspirators, Bunsen
burner, atomisers and sprayers [See Fig. 10.12]
used for perfumes or to spray insecticides work
on the same principle.

Fig. 10.12 The spray gun. Piston forces air at high

speeds causing a lowering of pressure

at the neck of the container.

h

A

a

2

1

Fig. 10.11 A schematic diagram of Venturi-meter.
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Example 10.7 Blood velocity: The flow of
blood in a large artery of an anesthetised
dog is diverted through a Venturi meter.
The wider part of the meter has a cross-
sectional area equal to that of the artery.
A = 8 mm2. The narrower part has an area
a = 4 mm2. The pressure drop in the artery
is 24 Pa. What is the speed of the blood in
the artery?

Answer We take the density of blood from Table
10.1 to be 1.06 ×  103 kg m-3. The ratio of the

areas is 
A

a

 
 
 

 = 2. Using Eq. (10.17) we obtain

t

10.4.3 Blood Flow and Heart Attack

Bernoulli’s principle helps in explaining blood

flow in artery. The artery may get constricted

due to the accumulation of plaque on its inner

walls. In order to drive the blood through this

constriction a greater demand is placed on the

activity of the heart. The speed of the flow of

the blood in this region is raised which lowers

the pressure inside and the artery may

collapse due to the external pressure. The

heart exerts further pressure to open this

artery and forces the blood through. As the

blood rushes through the opening, the

internal pressure once again drops due to

same reasons leading to a repeat collapse.

This may result in heart attack.

10.4.4 Dynamic Lift

Dynamic lift is the force that acts on a body,

such as airplane wing, a hydrofoil or a spinning

ball, by virtue of its motion through a fluid. In

many games such as cricket, tennis, baseball,

or golf, we notice that a spinning ball deviates

from its parabolic trajectory as it moves through

air. This deviation can be partly explained on

the basis of Bernoulli’s principle.

(i) Ball moving without spin: Fig. 10.13(a)

shows the streamlines around a

non-spinning ball moving relative to a fluid.

From the symmetry of streamlines it is clear

that the velocity of fluid (air) above and below

the ball at corresponding points is the same

resulting in zero pressure difference. The air

therefore, exerts no upward or downward

force on the ball.

(ii) Ball moving with spin: A ball which is

spinning drags air along with it. If the

surface is rough more air will be dragged.

Fig 10.13(b) shows  the streamlines of air

for a ball which is moving and spinning at

the same time. The ball is moving forward

and relative to it the air is moving

backwards. Therefore, the velocity of air

above the ball relative to the ball is larger

and below it is smaller (see Section 10.3).

The stream lines, thus, get crowded above

and rarified below.

This difference in the velocities of air results

in the pressure difference between the lower and

upper faces and there is a net upward force on

the ball. This dynamic lift due to spining is called

Magnus effect.

(a) (b) (c)

Fig 10.13 (a) Fluid streaming past a static sphere. (b) Streamlines for a fluid around a sphere spinning  clockwise.

(c) Air flowing past an aerofoil.

2020-21



262 PHYSICS

t

Aerofoil or lift on aircraft wing: Figure 10.13

(c) shows an aerofoil, which is a solid piece

shaped to provide an upward dynamic lift when

it moves horizontally through air. The cross-

section of the wings of an aeroplane looks

somewhat like the aerofoil shown in Fig. 10.13 (c)

with streamlines around it. When the aerofoil

moves against the wind, the orientation of the

wing relative to flow direction causes the

streamlines to crowd together above the wing

more than those below it. The flow speed on top

is higher than that below it. There is an upward

force resulting in a dynamic lift of the wings and

this balances the weight of the plane. The

following example illustrates this.

Example 10.8 A fully loaded Boeing

aircraft has a mass of 3.3 ×  105 kg. Its total

wing area is 500 m2. It is in level flight with

a speed of 960 km/h. (a) Estimate the

pressure difference between the lower and

upper surfaces of the wings (b) Estimate

the fractional increase in the speed of the

air on the upper surface of the wing relative

to the lower surface. [The density of air is ρ

= 1.2 kg m-3]

Answer (a) The weight of the Boeing aircraft is

balanced by the upward force due to the

pressure difference

∆P × A = 3.3 ×  105 kg ×  9.8

P∆ = (3.3 ×  105 kg ×  9.8 m s–2) / 500 m2

      = 6.5 × 103 Nm-2

(b) We ignore the small height difference

between the top and bottom sides in Eq. (10.12).

The pressure difference between them is

then

∆P v v= ( )ρ

2
2
2

1
2–

where v
2
 is the speed of air over the upper

surface and v
1
 is the speed under the bottom

surface.

v v
P

v v
2 1

2 1

2
–( ) =

+( )
∆

ρ

Taking the average speed

v
av
 = (v

2 
+ v

1
)/2 = 960 km/h = 267 m s-1,

we have

v v v
P

v
2 1 2

– /( ) =av

av

∆

ρ
≈  0.08

The speed above the wing needs to be only 8
% higher than that below. t

10.5  VISCOSITY

Most of the fluids are not ideal ones and offer some

resistance to motion. This resistance to fluid motion

is like an internal friction analogous to friction when

a solid moves on a surface. It is called  viscosity.

This force exists when there is relative motion

between layers of the liquid. Suppose we consider

a fluid  like oil  enclosed between two glass plates

as shown in Fig. 10.14 (a). The bottom plate is fixed

while the top plate is moved with a constant

velocity v relative to the fixed plate. If oil is

replaced by honey, a greater force is required to

move the plate with the same velocity. Hence

we say that honey is more viscous than oil. The

fluid in contact with a surface has the same

velocity as that of the surfaces. Hence, the layer

of the liquid in contact with top surface moves

with a velocity v and the layer of the liquid in

contact with the fixed surface is stationary. The

velocities of layers increase uniformly from

bottom (zero velocity) to the top layer (velocity

v). For any layer of liquid, its upper layer pulls

it forward while lower layer pulls it backward.

This results in force between the layers. This

type of flow is known as laminar. The layers of

liquid slide over one another as the pages of a

book do when it is placed flat on a table and a

horizontal force is applied to the top cover. When

a fluid is flowing in a pipe or a tube, then  velocity

of the liquid layer along the axis of the tube is

maximum and  decreases  gradually as we move

towards the walls where it becomes zero, Fig.

10.14 (b). The velocity on a cylindrical surface

in a tube is constant.

On account of this motion, a portion of liquid,

which at some instant has the shape ABCD, take

the shape of AEFD after short interval of time
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(∆t). During this time interval the liquid has

undergone a shear strain of

∆x/l. Since, the strain in a flowing fluid

increases with time continuously. Unlike a solid,

here the stress is found experimentally to depend

on ‘rate of change of strain’ or ‘strain rate’ i.e.

∆x/(l ∆t) or v/l instead of strain itself. The

coefficient of viscosity (pronounced ‘eta’) for a

fluid is defined as the ratio of shearing stress to

the strain rate.

η = =
F A

v l

F l

v A

/

/ (10.18)

The SI unit of viscosity is poiseiulle (Pl). Its

other units are N s m-2 or Pa s. The dimensions

of viscosity are [ML-1T-1]. Generally, thin liquids,

like water, alcohol, etc., are less viscous than

thick liquids, like coal tar, blood, glycerine, etc.

The coefficients of viscosity for some common

fluids are listed in Table 10.2. We point out two

facts about blood and water that you may find

interesting. As Table 10.2 indicates, blood is

‘thicker’ (more viscous) than water. Further, the

relative viscosity (η/η
water

) of blood remains

constant between 0 oC and 37 oC.

The viscosity of liquids decreases with

temperature, while it increases in the case of gases.

Example 10.9 A metal block of area 0.10 m2

is connected to a 0.010 kg mass via a string

that passes over an ideal pulley (considered

massless and frictionless), as in Fig. 10.15.

A liquid with a film thickness of 0.30 mm

is placed between the block and the table.

When released the block moves to the right

with a constant speed of 0.085 m s-1. Find

the coefficient of viscosity of the liquid.

Answer The metal block moves to the right

because of the tension in the string. The tension

T is equal in magnitude to the weight of the

suspended mass m. Thus, the shear force  F  is

F = T = mg = 0.010 kg ×  9.8 m s–2 = 9.8 ×  10-2 N

Shear stress on the fluid = F/A = N/m2

Strain rate = 

η =
stress

strain rate
s-1

  = 

  = 3.46 × 10-3 Pa s
  t

(a)

Fig. 10.15 Measurement of the coefficient of viscosity

of a liquid.

(b)

Fig 10.14 (a) A layer of liquid sandwiched between

two parallel glass plates, in which the

lower plate is fixed and the upper one is

moving to the right with velocity v
(b) velocity distribution for viscous flow in

a pipe.
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t

where ρ and σ are mass densities of sphere and

the fluid, respectively. We obtain

v
t
 = 2a2 (ρ-σ)g / (9η) (10.20)

So the terminal velocity v
t
 depends on the

square of the radius of the sphere and inversely

on the viscosity of the medium.

You may like to refer back to Example 6.2 in

this context.

Example 10.10 The terminal velocity of a

copper ball of radius 2.0 mm falling through

a tank of oil at 20oC is 6.5 cm s-1. Compute

the viscosity of the oil at 20oC. Density of

oil is 1.5 ×103 kg m-3, density of copper is

8.9 × 103 kg m-3.

Answer We have v
t 
= 6.5 × 10-2 ms-1, a = 2 × 10-3 m,

g = 9.8 ms-2,  ρ = 8.9 × 103 kg m-3,

σ =1.5 ×103 kg m-3. From Eq. (10.20)

   =  9.9 × 10-1 kg m–1 s–1 t

10.6  SURFACE TENSION

You must have noticed that, oil and water do

not mix; water wets you and me but not ducks;

mercury does not wet glass but water sticks to

it, oil rises up a cotton wick, inspite of gravity,

Sap and water rise up to the top of the leaves of

the tree,  hair of a paint brush do not cling

together when dry and even when dipped in

water but form a fine tip when taken out of it.

All these and many more such experiences are

related with the free surfaces of liquids. As

liquids have no definite shape but have a

definite volume, they acquire a free surface when

poured in a container. These surfaces  possess

some additional  energy. This phenomenon is

known as surface tension and it is concerned

with only liquid as gases do not have free

surfaces.  Let us now understand this

phenomena.

Table10.2 The viscosities of some fluids

Fluid T(oC) Viscosity (mPl)

Water 20 1.0

100 0.3

Blood 37 2.7

Machine Oil 16 113

38 34

Glycerine 20 830

Honey – 200

Air 0 0.017

40 0.019

10.5.1 Stokes’ Law

When a body falls through a fluid it drags the

layer of the fluid in contact with it. A relative

motion between the different layers of the fluid

is set and, as a result, the body experiences a

retarding force. Falling of a raindrop and

swinging of a pendulum bob are some common

examples of such motion. It is seen that the

viscous force is proportional to the velocity of

the object and is opposite to the direction of

motion. The other quantities on which the force

F depends are viscosity η of the fluid and radius

a of the sphere. Sir George G. Stokes (1819–

1903), an English scientist enunciated clearly

the viscous drag force F as

6F avη= π (10.19)

This is known as Stokes’ law. We shall not

derive Stokes’ law.

This law is an interesting example of retarding

force, which is proportional to velocity. We can

study its consequences on an object falling

through a viscous  medium. We consider a

raindrop in air. It accelerates initially due to

gravity. As the velocity increases, the retarding

force also increases. Finally, when viscous force

plus buoyant force becomes equal to the force

due to gravity, the net force becomes zero and so

does the acceleration. The sphere (raindrop) then

descends with a constant velocity. Thus, in

equilibrium, this terminal velocity v
t 
is given by

6πηav
t
 = (4π/3) a3 (ρ-σ)g
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Fig. 10.16 Schematic picture of molecules in a liquid, at the surface and balance of forces. (a) Molecule inside

a liquid. Forces on a molecule due to others are shown. Direction of arrows indicates attraction of

repulsion. (b) Same, for a molecule at a surface. (c) Balance of attractive (AI and repulsive (R) forces.

terms of this fact. What is the energy required

for having a molecule at the surface? As

mentioned above, roughly it is half the energy

required to remove it entirely from the liquid

i.e., half the heat of evaporation.

Finally, what is a surface? Since a liquid

consists of molecules moving about, there cannot

be a perfectly sharp surface. The density of the

liquid molecules drops rapidly to zero around

z = 0 as we move along the direction indicated

Fig 10.16 (c) in a distance of the order of a few

molecular sizes.

and to disperse them far away from each other

in order to evaporate or vaporise, the heat of

evaporation required is quite large. For water it

is of the order of 40 kJ/mol.

Let us consider a molecule near the surface

Fig. 10.16(b). Only lower half side of it is

surrounded by liquid molecules. There is some

negative potential energy due to these, but

obviously it is less than that of a molecule in

bulk, i.e., the one fully inside. Approximately

it is half of the latter. Thus, molecules on a

liquid surface have some extra energy in

comparison to molecules in the interior.  A

liquid, thus, tends to have the least surface

area which external conditions permit.

Increasing surface area requires energy. Most

surface phenomenon can be understood in

10.6.2 Surface Energy and Surface Tension

As we have discussed that an extra energy is

associated with surface of liquids, the creation

of more surface (spreading of surface) keeping

other things like volume fixed requires

additional energy. To appreciate this, consider

a horizontal liquid film ending in bar free to slide

over parallel guides Fig (10.17).

10.6.1 Surface Energy

A liquid stays together because of attraction

between molecules. Consider a molecule well

inside a liquid. The intermolecular distances are

such that it is attracted to all the surrounding

molecules [Fig. 10.16(a)]. This attraction results

in a negative potential energy for the molecule,

which depends on the number and distribution

of molecules around the chosen one. But the

average potential energy of all the molecules is

the same. This is supported by the fact that to

take a collection of such molecules (the liquid)

Fig. 10.17 Stretching a film. (a) A film in equilibrium;

(b) The film stretched an extra distance.

2020-21



266 PHYSICS

Suppose that we move the bar by a small

distance d as shown. Since the area of the

surface increases, the system now has more

energy, this means that some work has been

done against an internal force. Let this internal

force be F, the work done by the applied force is

F.d = Fd. From conservation of energy, this is

stored as additional energy in the film. If the

surface energy of the film is S per unit area, the

extra area is 2dl. A film has two sides and the

liquid in between, so there are two surfaces and

the extra energy is

S (2dl) = Fd (10.21)

Or, S=Fd/2dl = F/2l (10.22)

This quantity S is the magnitude of surface

tension. It is equal to the surface energy per unit

area of the liquid interface and is also equal to

the force per unit length exerted by the fluid on

the movable bar.

So far we have talked about the surface of one

liquid. More generally, we need to consider fluid

surface in contact with other fluids or solid

surfaces. The surface energy in that case depends

on the materials on both sides of the surface. For

example, if the molecules of the materials attract

each other, surface energy is reduced while if they

repel each other the surface energy is increased.

Thus, more appropriately, the surface energy is

the energy of the interface between two materials

and depends on both of them.

We make the following observations from

above:

(i) Surface tension is a force per unit length

(or surface energy per unit area) acting in

the plane of the interface between the plane

of the liquid and any other substance; it also

is the extra energy that the molecules at the

interface have as compared to molecules in

the interior.

(ii) At any point on the interface besides the

boundary, we can draw a line and imagine

equal and opposite surface tension forces S

per unit length of the line acting

perpendicular to the line, in the plane of the

interface. The line is in equilibrium. To be

more specific, imagine a line of atoms or

molecules at the surface. The atoms to the

left pull the line towards them; those to the

right pull it towards them! This line of atoms

is in equilibrium under tension. If the line

really marks the end of the interface, as in

Figure 10.16 (a) and (b) there is only the force

S per unit length acting inwards.

Table 10.3 gives the surface tension of various

liquids. The value of surface tension depends

on temperature. Like viscosity, the surface

tension of a liquid usually falls with

temperature.

Table 10.3 Surface tension of some liquids at the
temperatures indicated with the
heats of the vaporisation

Liquid Temp (oC) Surface Heat of

Tension vaporisation
 (N/m)  (kJ/mol)

Helium –270 0.000239 0.115

Oxygen –183 0.0132 7.1

Ethanol 20 0.0227 40.6

Water 20 0.0727 44.16

Mercury 20 0.4355 63.2

A fluid will stick to a solid surface if the

surface energy between fluid and the solid is

smaller than the sum of surface energies

between solid-air, and fluid-air. Now there is

attraction between the solid surface and the

liquid. It can be directly measured

experimentaly as schematically shown in Fig.

10.18. A flat vertical glass plate, below which a

vessel of some liquid is kept, forms one arm of

the balance. The plate is balanced by weights
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on the other side, with its horizontal edge just

over water. The vessel is raised slightly till the

liquid just touches the glass plate and pulls it

down a little because of surface tension. Weights

are added till the plate just clears water.

Fig. 10.18 Measuring Surface Tension.

Suppose the additional weight required is W.

Then from Eq. 10.22 and the discussion given

there, the surface tension of the liquid-air

interface is

S
la 

= (W/2l) = (mg/2l ) (10.23)

where m is the extra mass and l is the length of

the plate edge. The subscript (la) emphasises

the fact that the liquid-air interface tension is

involved.

10.6.3 Angle of Contact

The surface of liquid near the plane of contact,

with another medium is in general curved. The

angle between tangent to the liquid surface at

the point of contact and solid surface inside the

liquid is termed as angle of contact. It is denoted

by θ. It is different at interfaces of different pairs

of liquids and solids. The value of θ determines

whether a liquid will spread on the surface of a

solid or it will form droplets on it. For example,

water forms droplets on lotus leaf as shown in

Fig. 10.19 (a) while spreads over a clean plastic

plate as shown in Fig. 10.19(b).

(a)

(b)

Fig. 10.19 Different shapes of water drops with

interfacial tensions (a) on a lotus leaf (b)

on a clean plastic plate.

We consider the three interfacial tensions at

all the three interfaces, liquid-air, solid-air and

solid-liquid denoted by S
la
, S

sa
 and S

sl 
, respectively

as given in Fig. 10.19 (a) and (b). At the line of

contact, the surface forces between the three media

must be in equilibrium. From the Fig. 10.19(b) the

following relation is easily derived.

S
la
 cos θ  +  S

sl
 =  S

sa
(10.24)

The angle of contact is an obtuse angle if

S
sl  

> S
la
 as in the case of water-leaf interface

while it is an acute angle if S
sl  

< S
la
 as in the

case of water-plastic interface. When θ is an

obtuse angle then molecules of liquids are

attracted strongly to themselves and weakly to

those of solid, it costs a lot of energy to create a

liquid-solid surface, and liquid then does not

wet the solid. This is what happens with water

on a waxy or oily surface, and with mercury on

any surface. On the other hand, if the molecules

of the liquid are strongly attracted to those of

2020-21



268 PHYSICS

the solid, this will reduce S
sl
 and therefore,

cos θ may increase or θ may decrease. In this

case θ is an acute angle. This is what happens

for water on glass or on plastic and for kerosene

oil on virtually anything (it just spreads). Soaps,

detergents and dying substances are wetting

agents. When they are added the angle of

contact becomes small so that these may

penetrate well and become effective. Water

proofing agents on the other hand are added to

create a large angle of contact between the water

and fibres.

10.6.4 Drops and Bubbles

One consequence of surface tension is that free

liquid drops and bubbles are spherical if effects

of gravity can be neglected. You must have seen

this especially clearly in small drops just formed

in a high-speed spray or jet, and in soap bubbles

blown by most of us in childhood. Why are drops

and bubbles spherical? What keeps soap

bubbles stable?

As we have been saying repeatedly, a liquid-

air interface has energy, so for a given volume

the surface with minimum energy is the one with

the least area. The sphere has this property.

Though it is out of the scope of this book, but

you can check that a sphere is better than at

least a cube in this respect! So, if gravity and

other forces (e.g. air resistance) were ineffective,

liquid drops would be spherical.

Another interesting consequence of surface

tension is that the pressure inside a spherical

drop Fig. 10.20(a) is more than the pressure

outside. Suppose a spherical drop of radius r is

in equilibrium. If its radius increase by ∆r. The

extra surface energy is

[4π(r + ∆r) 2- 4πr2] S
la
 = 8πr ∆r S

la
(10.25)

If the drop is in equilibrium this energy cost is

balanced by the energy gain due to

expansion under the pressure difference (P
i
 – P

o
)

between the inside of the bubble and the outside.

The work done is

W = (P
i
 – P

o
) 4πr2∆r (10.26)

so that

(P
i
 – P

o
) = (2 S

la
/ r) (10.27)

In general, for a liquid-gas interface, the

convex side has a higher pressure than the

concave side. For example, an air bubble in a

liquid, would have higher pressure inside it.

See Fig 10.20 (b).

Fig. 10.20 Drop, cavity and bubble of radius r.

A bubble Fig 10.20 (c) differs from a drop

and a cavity; in this it has two interfaces.

Applying the above argument we have for a

bubble

 (P
i
 – P

o
) = (4 S

la
/ r) (10.28)

This is probably why you have to blow hard,

but not too hard, to form a soap bubble. A little

extra air pressure is needed inside!

10.6.5 Capillary Rise

One consequence of the pressure difference

across a curved liquid-air interface is the well-

known effect that water rises up in a narrow

tube in spite of gravity. The word capilla means

hair in Latin; if the tube were hair thin, the rise

would be very large. To see this, consider a

vertical capillary tube of circular cross section

(radius a) inserted into an open vessel of water

(Fig. 10.21). The contact angle between water

Fig. 10.21 Capillary rise, (a) Schematic picture of a

narrow tube immersed water.

(b) Enlarged picture near interface.
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and glass is acute. Thus the surface of water in

the capillary is concave. This means that

there is a pressure difference between the

two sides of the top surface. This is given by

(P
i
 – P

o
) =(2S/r) = 2S/(a sec θ )

= (2S/a) cos θ (10.29)

Thus the pressure of the water inside the

tube, just at the meniscus (air-water interface)

is less than the atmospheric pressure. Consider

the two points A and B in Fig. 10.21(a). They

must be at the same pressure, namely

P
0
 + h ρ  g = P

i
 = P

A
(10.30)

where ρρρρρ is the density of water and h is called

the capillary rise [Fig. 10.21(a)]. Using

Eq. (10.29) and (10.30) we have

h ρ  g = (P
i
 – P

0
) = (2S cos θ  )/a    (10.31)

The discussion here, and the Eqs. (10.26) and

(10.27) make it clear that the capillary rise is

due to surface tension. It is larger, for a smaller

a. Typically it is of the order of a few cm for fine

capillaries. For example, if a = 0.05 cm, using

the value of surface tension for water (Table

10.3), we find that

h = 2S/(ρ  g a)

  

-1

3 -3 -2 -4

2×(0.073 N m )
=

(10 kg m ) (9.8 m s )(5 × 10 m)

  = 2.98 ×  10–2 m = 2.98 cm

Notice that if the liquid meniscus is convex,

as for mercury, i.e., if cos θ is negative then from

Eq. (10.30) for example, it is clear that the liquid

will be lower in the capillary !

10.6.6 Detergents and Surface Tension

We clean dirty clothes containing grease and oil

stains sticking to cotton or other fabrics by

adding detergents or soap to water, soaking

clothes in it and shaking. Let us understand

this process better.

Washing with water does not remove grease

stains. This is because water does not wet greasy

dirt; i.e., there is very little area of contact

between them. If water could wet grease, the flow

of water could carry some grease away.

Something of this sort is achieved through

detergents. The molecules of detergents are

hairpin shaped, with one end attracted to water
and the other to molecules of grease, oil or wax,
thus tending to form water-oil interfaces. The result
is shown in Fig. 10.22 as a sequence of figures.

In our language, we would say that addition
of detergents, whose molecules attract at one
end and say, oil on the other, reduces drastically
the surface tension S (water-oil). It may even
become energetically favourable to form such
interfaces, i.e., globs of dirt surrounded by
detergents and then by water. This kind of
process using surface active detergents or
surfactants is important not only for cleaning,
but also in recovering oil, mineral ores etc.

Fig. 10.22 Detergent action in terms of what

detergent molecules do.

.
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Example 10.11 The lower end of a capillary
tube of diameter 2.00 mm is dipped 8.00
cm below the surface of water in a beaker.
What is the pressure required in the tube
in order to blow a hemispherical bubble at
its end in water? The surface tension of
water at temperature of the experiments is
7.30×10-2 Nm-1. 1 atmospheric pressure =
1.01 × 105 Pa, density of water = 1000 kg/m3,
g = 9.80 m s-2. Also calculate the excess
pressure.

Answer The excess pressure in a bubble of gas
in a liquid is given by 2S/r, where S is the
surface tension of the liquid-gas interface. You
should note there is only one liquid surface in
this case. (For a bubble of liquid in a gas, there
are two liquid surfaces, so the formula for

excess pressure in that case is 4S/r.) The
radius of the bubble is r. Now the pressure
outside the bubble P

o
 equals atmospheric

pressure plus the pressure due to 8.00 cm of
water column. That is

P
o
 = (1.01 × 105 Pa + 0.08 m × 1000 kg m–3

    × 9.80 m s–2)
    = 1.01784 × 105 Pa

Therefore, the pressure inside the bubble is
  P

i 
 = P

o
 + 2S/r

= 1.01784 × 105 Pa + (2 × 7.3 × 10-2 Pa m/10-3 m)
= (1.01784 + 0.00146) × 105  Pa
= 1.02  × 105 Pa

where the radius of the bubble is taken
to be equal to the radius of the capillary tube,
since the bubble is hemispherical ! (The answer
has been rounded off to three significant
figures.) The excess pressure in the
bubble is 146 Pa. t

SUMMARY

1. The basic property of a fluid is that it can flow. The fluid does not have any

resistance to change of its shape. Thus, the shape of a fluid is governed by the

shape of its container.

2. A liquid is incompressible and has a free surface of its own. A gas is compressible

and it expands to occupy all the space available to it.

3. If F is the normal force exerted by a fluid on an area A then the average pressure P
av

is defined as the ratio of the force to area

A

F
P

av
=

4. The unit of the pressure is the pascal (Pa). It is the same as N m-2. Other common

units of pressure are

1 atm = 1.01×105 Pa

1 bar = 105 Pa

1 torr = 133 Pa = 0.133 kPa

1 mm of Hg = 1 torr = 133 Pa

5. Pascal’s law states that: Pressure in a fluid at rest is same at all points which are at

the same height. A change in pressure applied to an enclosed fluid is transmitted

undiminished to every point of the fluid and the walls of the containing vessel.

6. The pressure in a fluid varies with depth h according to the expression

P = P
a 
+ ρgh

where  ρ is the density of the fluid, assumed uniform.

7. The volume of an incompressible fluid passing any point every second in a pipe of

non uniform crossection is the same in the steady flow.

v A = constant ( v is the velocity and A is the area of crossection)

The equation is due to mass conservation in incompressible fluid flow.
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8. Bernoulli’s principle states that as we move along a streamline, the sum of the

pressure (P), the kinetic energy per unit volume (ρv2/2) and the potential energy per

unit volume (ρgy) remains a constant.

P + ρv2/2 + ρgy = constant

The equation is basically the conservation of energy applied to non viscuss fluid

motion in steady state. There is no fluid which have zero viscosity, so the above

statement is true only approximately. The viscosity is like friction and converts the

kinetic energy to heat energy.

9. Though shear strain in a fluid does not require shear stress, when a shear stress is

applied to a fluid, the motion is generated which causes a shear strain growing

with time. The ratio of the shear stress to the time rate of shearing strain is known

as coefficient of viscosity, η.

where symbols have their usual meaning and are defined in the text.

10. Stokes’ law states that the viscous drag force F on a sphere of radius a moving with

velocity v through a fluid of viscosity is, F = 6πηav.

11. Surface tension is a force per unit length (or surface energy per unit area) acting in

the plane of interface between the liquid and the bounding surface. It is the extra

energy that the molecules at the interface have as compared to the interior.

POINTS TO PONDER

1. Pressure is a scalar quantity. The definition of the pressure as “force per unit area”
may give one false impression that pressure is a vector. The “force” in the numerator of
the definition is the component of the force normal to the area upon which it is
impressed. While describing fluids as a concept, shift from particle and rigid body
mechanics is required. We are concerned with properties that vary from point to point
in the fluid.

2.  One should not think of pressure of a fluid as being exerted only on a solid like the
walls of a container or a piece of solid matter immersed in the fluid. Pressure exists at
all points in a fluid. An element of a fluid (such as the one shown in Fig. 10.2) is in
equilibrium because the pressures exerted on the various faces are equal.

3. The expression for pressure
P = P

a 
+ ρgh

holds true if fluid is incompressible. Practically speaking it holds for liquids, which
are largely incompressible and hence  is a constant with height.

4. The gauge pressure is the difference of the actual pressure and the atmospheric pressure.
P – P

a 
= P

g

Many pressure-measuring devices measure the gauge pressure. These include the tyre
pressure gauge and the blood pressure gauge (sphygmomanometer).

5. A streamline is a map of fluid flow. In a steady flow two streamlines do not intersect as
it means that the fluid particle will have two possible velocities at the point.

6. Bernoulli’s principle does not hold in presence of viscous drag on the fluid. The work
done by this dissipative viscous force must be taken into account in this case, and P

2

[Fig. 10.9] will be lower than the value given by Eq. (10.12).
7. As the temperature rises the atoms of the liquid become more mobile and the coefficient

of viscosity, η  falls. In a gas the temperature rise increases the random motion of
atoms and η  increases.

8. Surface tension arises due to excess potential energy of the molecules on the surface
in comparison to their potential energy in the interior. Such a surface energy is present
at the interface separating two substances at least one of which is a fluid. It is not the
property of a single fluid alone.
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EXERCISES

10.1 Explain why
(a) The blood pressure in humans is greater at the feet than at the brain
(b) Atmospheric pressure at a height of about 6 km decreases to nearly half of

its value at the sea level, though the height of the atmosphere is more than
100 km

(c) Hydrostatic pressure is a scalar quantity even though pressure is force
divided by area.

10.2 Explain why
(a) The angle of contact of mercury with glass is obtuse, while that of water

with glass is acute.
(b) Water on a clean glass surface tends to spread out while mercury on the

same surface tends to form drops. (Put differently, water wets glass while
mercury does not.)

(c) Surface tension of a liquid is independent of the area of the surface
(d) Water with detergent disolved in it should have small angles of contact.
(e) A drop of liquid under no external forces is always spherical in shape

10.3 Fill in the blanks using the word(s) from the list appended with each statement:
(a) Surface tension of liquids generally . . . with temperatures (increases / decreases)
(b) Viscosity of gases . . . with temperature, whereas viscosity of   liquids  . . .  with

temperature (increases / decreases)
(c) For solids with elastic modulus of rigidity, the shearing force is proportional

to . . . , while for fluids it is proportional to . . . (shear strain / rate of shear
strain)

(d) For a fluid in a steady flow, the increase in flow speed at a constriction follows
(conservation of mass / Bernoulli’s principle)

(e) For the model of  a plane in a wind tunnel, turbulence occurs at a ... speed for
turbulence for an actual plane (greater / smaller)

10.4 Explain why
(a) To keep a piece of paper horizontal, you should blow over, not under, it
(b) When we try to close a water tap with our fingers, fast jets of water gush

through the openings between our fingers
(c) The size of the needle of a syringe controls flow rate better than the thumb

pressure exerted by a doctor while administering an injection
(d) A fluid flowing out of a small hole in a vessel results in a backward thrust on

the vessel
(e) A spinning cricket ball in air does not follow a parabolic trajectory

10.5 A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with
a diameter 1.0 cm. What is the pressure exerted by the heel on the horizontal floor ?
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10.6 Toricelli’s barometer used mercury. Pascal duplicated it using French wine of density
984 kg m–3. Determine the height of the wine column for normal atmospheric
pressure.

10.7 A vertical off-shore structure is built to withstand a maximum stress of 109 Pa. Is
the structure suitable for putting up on top of an oil well in the ocean ? Take the
depth of the ocean to be roughly 3 km, and ignore ocean currents.

10.8 A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000
kg. The area of cross-section of the piston carrying the load is 425 cm2. What
maximum pressure would the smaller piston have to bear ?

10.9 A U-tube contains water and methylated spirit separated by mercury. The mercury
columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm
of spirit in the other. What is the specific gravity of spirit ?

10.10 In the previous problem, if 15.0 cm of water and spirit each are further poured into
the respective arms of the tube, what is the difference in the levels of mercury in
the two arms ? (Specific gravity of mercury = 13.6)

10.11 Can Bernoulli’s equation be used to describe the flow of water through a rapid in a
river ? Explain.

10.12 Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli’s
equation ? Explain.

10.13 Glycerine flows steadily through a horizontal tube of length 1.5 m and radius 1.0
cm. If the amount of glycerine collected per second at one end is 4.0 ×  10–3 kg s–1,
what is the pressure difference between the two ends of the tube ? (Density of glycerine
= 1.3 ×  103 kg m–3 and viscosity of glycerine = 0.83 Pa s). [You may also like to check
if the assumption of laminar flow in the tube is correct].

10.14 In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the
upper and lower surfaces of the wing are 70 m s–1and 63 m s-1 respectively. What is
the lift on the wing if its area is 2.5 m2  ? Take the density of air to be 1.3 kg m–3.

10.15 Figures 10.23(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of
the two figures is incorrect ? Why ?

Fig. 10.23

10.16 The cylindrical tube of a spray pump has a cross-section of 8.0 cm2 one end of
which has 40 fine holes each of diameter 1.0 mm. If the liquid flow inside the tube
is 1.5 m min–1, what is the speed of ejection of the liquid through the holes ?

10.17 A U-shaped wire is dipped in a soap solution, and removed. The thin soap film
formed between the wire and the light slider supports a weight of 1.5 ×  10–2 N
(which includes the small weight of the slider). The length of the slider is 30 cm.
What is the surface tension of the film ?

10.18 Figure 10.24 (a) shows a thin liquid film supporting a small weight = 4.5 ×  10–2 N.
What is the weight supported by a film of the same liquid at the same temperature
in Fig. (b) and (c) ? Explain your answer physically.
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Fig. 10.24

10.19 What is the pressure inside the drop of mercury of radius 3.00 mm at room
temperature ? Surface  tension of mercury  at that temperature  (20 °C) is 4.65 ×
10–1 N m–1. The atmospheric pressure is 1.01 × 105 Pa. Also give the excess pressure
inside the drop.

10.20 What is the excess pressure inside a bubble of soap solution of radius 5.00 mm,
given that the surface tension of soap solution at the temperature (20 °C) is 2.50 ×
10–2 N m–1 ? If an air bubble of the same dimension were formed at depth of 40.0
cm inside a container containing the soap solution (of relative density 1.20), what
would be the pressure inside the bubble ? (1 atmospheric pressure is  1.01 ×  105 Pa).

Additional Exercises

10.21 A tank with a square base of area 1.0 m2 is divided by a vertical partition in the
middle. The bottom of the partition has a small-hinged door of area 20 cm2. The
tank is filled with water in one compartment, and an acid (of relative density 1.7) in
the other, both to a height of 4.0 m. compute the force necessary to keep the door
close.

10.22 A manometer reads the pressure of a gas in an enclosure as shown in Fig. 10.25 (a)
When a pump removes some of the gas, the manometer reads as in Fig. 10.25 (b)
The liquid used in the manometers is mercury and the atmospheric pressure is 76
cm of mercury.
(a) Give the absolute and gauge pressure of the gas in the enclosure for cases (a)

and (b), in units of cm of mercury.
(b) How would the levels change in case (b) if 13.6 cm of water (immiscible with

mercury) are poured into the right limb of the manometer ? (Ignore the small
change in the volume of the gas).

Fig. 10.25

10.23 Two vessels have the same base area but different shapes. The first vessel takes
twice the volume of water that the second vessel requires to fill upto a particular
common height. Is the force exerted by the water on the base of the vessel the same
in the two cases ? If so, why do the vessels filled with water to that same height give
different readings on a weighing scale ?
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10.24 During blood transfusion the needle is inserted in a vein where the gauge pressure
is 2000 Pa. At what height must the blood container be placed so that blood may
just enter the vein ? [Use the density of whole blood from Table 10.1].

10.25 In deriving Bernoulli’s equation, we equated the work done on the fluid in the tube
to its change in the potential and kinetic energy. (a) What is the largest average
velocity of blood flow in an artery of diameter 2 ×  10–3 m if the flow must remain
laminar ?  (b) Do the dissipative forces become more important as the fluid velocity
increases ? Discuss qualitatively.

10.26 (a) What is the largest average velocity of blood flow in an artery of radius 2×10–3m
if the flow must remain lanimar? (b) What is the corresponding flow rate ? (Take
viscosity of blood to be 2.084 ×  10–3 Pa s).

10.27 A plane is in level flight at constant speed and each of its two wings has an area of
25 m2. If the speed of the air is 180 km/h over the lower wing and 234 km/h over
the upper wing surface, determine the plane’s mass. (Take air density to be 1 kg
m–3).

10.28 In Millikan’s oil drop experiment, what is the terminal speed of an uncharged drop
of radius 2.0 ×  10–5 m and density 1.2 ×  103 kg m–3. Take the viscosity of air at the
temperature of the experiment to be 1.8 ×  10–5 Pa s. How much is the viscous force
on the drop at that speed ? Neglect buoyancy of the drop due to air.

10.29 Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube
of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By
what amount does the mercury dip down in the tube relative to the liquid surface
outside ? Surface tension of mercury at the temperature of the experiment is 0.465
N m–1. Density of mercury = 13.6 ×  103 kg m–3.

10.30 Two  narrow  bores  of  diameters  3.0 mm and 6.0 mm  are joined together to form
a U-tube open at both ends. If the U-tube contains water, what is the difference in
its levels in the two limbs of the tube ? Surface tension of water at the temperature
of the experiment is 7.3 × 10–2 N m–1. Take the angle of contact to be zero and
density of water to be 1.0 ×  103 kg m–3 (g = 9.8 m s–2) .

Calculator/Computer – Based  Problem

10.31 (a) It is known that density ρ of air decreases with height y as

0
oy/ye −ρ = ρ

where ρ
0
 = 1.25 kg m–3 is the density at sea level, and y

0
 is a constant. This density

variation is called the law of atmospheres. Obtain this law assuming that the
temperature of atmosphere remains a constant (isothermal conditions). Also assume
that the value of g remains constant.
(b) A large He balloon of volume 1425 m3 is used to lift a payload of 400 kg. Assume
that the balloon maintains constant radius as it rises. How high does it rise ?

[Take y
0
 = 8000 m and ρ

He
 = 0.18 kg m–3].
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APPENDIX 10.1 : WHAT IS BLOOD PRESSURE ?

In evolutionary history there occurred a time when animals started spending a significant amount
of time in the upright position. This placed a number of demands on the circulatory system. The
venous system that returns blood from the lower extremities to the heart underwent changes. You
will recall that veins are blood vessels through which blood returns to the heart. Humans and
animals such as the giraffe have adapted to the problem of moving blood upward against gravity.
But animals such as snakes, rats and rabbits will die if held upwards, since the blood remains in
the lower extremities and the venous system is unable to move it towards the heart.

Fig. 10.26 Schematic view of the gauge pressures in the arteries in various parts of the human body while

standing or lying down. The pressures shown are averaged over a heart cycle.

Figure 10.26 shows the average pressures observed in the arteries at various points in the human body.
Since viscous effects are small, we can use Bernoulli’s equation, Eq. (10.13),

21
Constant

2
P v gy+ ρ + ρ =

to understand these pressure values. The kinetic energy term (ρ  v2/2) can be ignored since the velocities in
the three arteries are small (≈  0.1 m s–1) and almost constant. Hence the gauge pressures at the brain P

B
,

the heart P
H
, and the foot P

F 
are related by

P
F
 = P

H
 +  ρ g h

H
 = P

B
 + ρ g h

B
(10.34)

where ρ is the density of blood.

Typical values of the heights to the heart and the brain are h
H
 = 1.3 m and h

B
 = 1.7 m. Taking

ρ = 1.06 ×  103 kg m–3 we obtain that P
F  

= 26.8 kPa (kilopascals) and
 
P

B
 = 9.3 kPa given that P

H
 = 13.3 kPa.

Thus the pressures in the lower and upper parts of the body are so different when a person is standing,
but are almost equal when he is lying down. As mentioned in the text the units for pressure more
commonly employed in medicine and physiology are torr and mm of Hg. 1 mm of Hg = 1 torr = 0.133 kPa.
Thus the average pressure at the heart is P

H
 = 13.3 kPa = 100 mm of Hg.

The human body is a marvel of nature. The veins in the lower extremities are equipped with valves,
which open when blood flows towards the heart and close if it tends to drain down. Also, blood is returned
at least partially by the pumping action associated with breathing and by the flexing of the skeletal muscles
during walking. This explains why a soldier who is required to stand at attention may faint because of
insufficient return of the blood to the heart. Once he is made to lie down, the pressures become equalized
and he regains consciousness.

An instrument called the sphygmomanometer usually measures the blood pressure of humans. It is a
fast, painless and non-invasive technique and gives the doctor a reliable idea about the patient’s health.
The measurement process is shown in Fig. 10.27. There are two reasons why the upper arm is used. First,
it is at the same level as the heart and measurements here give values close to that at the heart. Secondly,
the upper arm contains a single bone and makes the artery there (called the brachial artery) easy to
compress. We have all measured pulse rates by placing our fingers over the wrist. Each pulse takes a little
less than a second. During each pulse the pressure in the heart and the  circulatory  system goes through a
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maximum as the blood is pumped by the heart (systolic  pressure) and a minimum as the heart relaxes

(diastolic pressure). The sphygmomanometer is a device, which measures these extreme pressures. It

works on the principle that blood flow in the brachial (upper arm) artery can be made to go from
laminar to turbulent by suitable compression. Turbulent flow is dissipative, and its sound can be
picked up on the stethoscope.

The gauge pressure in an air sack wrapped around the upper arm is measured using a manometer or a

dial pressure gauge (Fig. 10.27). The pressure in the sack is first increased till the brachial artery is closed.

The pressure in the sack is then slowly reduced while a stethoscope placed just below the sack is used to
listen to noises arising in the brachial artery. When

the pressure is just below the systolic (peak)

pressure, the artery opens briefly. During this brief

period, the blood velocity in the highly constricted

artery is high and turbulent and hence noisy. The

resulting noise is heard as a tapping sound on the
stethoscope. When the pressure in the sack is

lowered further, the artery remains open for a longer

portion of the heart cycle. Nevertheless, it remains

closed during the diastolic (minimum pressure)

phase of the heartbeat. Thus the duration of the

tapping sound is longer. When the pressure in the
sack reaches the diastolic pressure the artery is

open during the entire heart cycle. The flow is

however, still turbulent and noisy. But instead of a

tapping sound we hear a steady, continuous roar

on the stethoscope.

The blood pressure of a patient is presented as the ratio of systolic/diastolic pressures. For a resting

healthy adult it is typically 120/80 mm of Hg (120/80 torr). Pressures above 140/90 require medical

attention and advice. High blood pressures may seriously damage the heart, kidney and other organs and

must be controlled.

Fig. 10.27 Blood pressure measurement using the

sphygmomanometer and stethoscope.
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CHAPTER ELEVEN

THERMAL PROPERTIES OF MATTER

11.1  INTRODUCTION

We all have common sense notions of heat and temperature.
Temperature is a measure of ‘hotness’ of a body. A kettle
with boiling water is hotter than a box containing ice. In
physics, we need to define the notion of heat, temperature,
etc., more carefully. In this chapter, you will learn what heat
is and how it is measured, and study the various proceses by
which heat flows from one body to another. Along the way,
you will find out why blacksmiths heat the iron ring before
fitting on the rim of a wooden wheel of a horse cart and why
the wind at the beach often reverses direction after the sun
goes down. You will also learn what happens when water boils
or freezes, and its temperature does not change during these
processes even though a great deal of heat is flowing into or
out of it.

11.2  TEMPERATURE AND HEAT

We can begin studying thermal properties of matter with
definitions of temperature and heat. Temperature is a relative
measure, or indication of hotness or coldness. A hot utensil
is said to have a high temperature, and ice cube to have a
low temperature. An object that has a higher temperature
than another object is said to be hotter. Note that hot and
cold are relative terms, like tall and short. We can perceive
temperature by touch. However, this temperature sense is
somewhat unreliable and its range is too limited to be useful
for scientific purposes.

We know from experience that a glass of ice-cold water left

on a table on a hot summer day eventually warms up whereas

a cup of hot tea on the same table cools down. It means that

when the temperature of body, ice-cold water or hot tea in

this case, and its surrounding medium are different, heat

transfer takes place between the system and the surrounding

medium, until the body and the surrounding medium are at

the same temperature. We also know that in the case of glass

tumbler of ice-cold water, heat flows from the environment to

11.1 Introduction

11.2 Temperature and heat

11.3 Measurement of

temperature

11.4 Ideal-gas equation and

absolute temperature

11.5 Thermal expansion

11.6 Specific heat capacity

11.7 Calorimetry

11.8 Change of state

11.9 Heat transfer

11.10 Newton’s law of cooling

Summary

Points to ponder

Exercises

Additional Exercises

2020-21



the glass tumbler, whereas in the case of hot

tea, it flows from the cup of hot tea to the

environment. So, we can say that heat is the

form of energy transferred between two (or
more) systems or a system and its
surroundings by virtue of temperature
difference. The SI unit of heat energy

transferred is expressed in joule (J) while SI unit

of temperature is Kelvin (K), and degree Celsius

(oC) is a commonly used unit of temperature.

When an object is heated, many changes may

take place. Its temperature may rise, it may

expand or change state. We will study the effect

of heat on different bodies in later sections.

11.3  MEASUREMENT OF TEMPERATURE

A measure of temperature is obtained using a

thermometer. Many physical properties of

materials change sufficiently with temperature.

Some such properties are used as the basis for

constructing thermometers. The commonly used

property is variation of the volume of a liquid

with temperature. For example, in common

liquid–in–glass thermometers,  mercury, alcohol

etc., are used whose volume varies linearly with

temperature over a wide range.

    Thermometers are calibrated so that a

numerical value may be assigned to a given

temperature in an appropriate scale. For the

definition of any standard scale, two fixed

reference points are needed. Since all

substances change dimensions with

temperature, an absolute reference for

expansion is not available. However, the

necessary fixed points may be correlated to the

physical phenomena that always occur at the

same temperature. The ice point and the steam

point of water are two convenient fixed points

and are known as the freezing and boiling

points, respectively. These two points are the

temperatures at which pure water freezes and

boils under standard pressure. The two familiar

temperature scales are the Fahrenheit

temperature scale and the Celsius temperature

scale. The ice and steam point have values

32 °F and 212 °F, respectively, on the Fahrenheit

scale and 0 °C and 100 °C on the Celsius scale.

On the Fahrenheit scale, there are 180 equal

intervals between two reference points, and on

the Celsius scale, there are 100.

Fig. 11.1 A plot of Fahrenheit temperature (t
F
) versus

Celsius temperature (t
c
).

 A relationship for converting between the two
scales may be obtained from a graph of
Fahrenheit temperature (t

F
) versus celsius

temperature (t
C
) in a straight line (Fig. 11.1),

whose equation is

t t
F C– 32

180 100
= (11.1)

11.4 IDEAL-GAS EQUATION AND
ABSOLUTE TEMPERATURE

Liquid-in-glass thermometers show different

readings for temperatures other than the fixed

points because of differing expansion properties.

A thermometer that uses a gas, however, gives

the same readings regardless of which gas is

used. Experiments show that all gases at low

densities exhibit same expansion behaviour. The

variables that describe the behaviour of a given

quantity (mass) of gas are pressure, volume, and

temperature (P, V, and T )(where T = t + 273.15;

t is the temperature in °C). When temperature

is held constant, the pressure and volume of a

quantity of gas are related as  PV = constant.

This relationship is known as Boyle’s law, after

Robert Boyle (1627–1691), the English Chemist

who discovered it. When the pressure is held

constant, the volume of a quantity of the gas is

related to the temperature as V/T = constant.

This relationship is known as Charles’ law,

after  French scientist Jacques Charles (1747–

1823). Low-density gases obey these

laws, which may be combined into a single
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relationship. Notice that since PV = constant

and V/T = constant for a given quantity of gas,
then PV/T should also be a constant. This
relationship is known as ideal gas law. It can be
written in a more general form that applies not
just to a given quantity of a single gas but to any
quantity of any low-density gas and is known as
ideal-gas equation:

PV
R

T
µ=

or PV = µRT (11.2)
where, µ is the number of moles in the sample
of gas and R is called universal gas constant:

R = 8.31 J mol–1 K–1

In Eq. 11.2, we have learnt that the pressure
and volume are directly proportional to
temperature : PV ∝ T. This relationship allows a
gas to be used to measure temperature in a
constant volume gas thermometer. Holding the
volume of a gas constant, it gives P ∝T. Thus,
with a constant-volume gas thermometer,
temperature is read in terms of pressure. A plot
of pressure versus temperature gives a straight
line in this case, as shown in Fig. 11.2.

However, measurements on real gases deviate

from the values predicted by the ideal gas law
at low temperature. But the relationship is linear

over a large temperature range, and it looks as

though the pressure might reach zero with

decreasing temperature if the gas continued to

be a gas. The absolute minimum temperature

for an ideal gas, therefore, inferred by
extrapolating the straight line to the axis, as in
Fig. 11.3.  This temperature is found to be
– 273.15 °C and is designated as absolute zero.
Absolute zero is the foundation of the Kelvin
temperature scale or absolute scale temperature

named after the British scientist Lord Kelvin. On

this scale, – 273.15 °C is taken as the zero point,
that is 0 K (Fig. 11.4).

The size of unit in Kelvin and Celsius
temperature scales is the same.  So, temperature
on these scales are related by

T = t
C
 + 273.15 (11.3)

11.5  THERMAL EXPANSION

You may have observed that sometimes sealed
bottles with metallic lids are so tightly screwed
that one has to put the lid in hot water for some
time to open it. This would allow the metallic lid
to expand, thereby loosening it to unscrew
easily. In case of liquids, you may have observed
that mercury in a thermometer rises, when the

thermometer is put in slightly warm water. If

we take out the thermometer from the warm

Fig. 11.2 Pressure versus temperature of a low

density gas kept at constant volume.

Fig. 11.3 A plot of pressure versus temperature and

extrapolation of lines for low density gases

indicates the same absolute zero

temperature.

Fig. 11.4 Comparision of the Kelvin, Celsius and

Fahrenheit temperature scales.
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water the level of mercury falls again. Similarly,

in case of gases, a balloon partially inflated in a

cool room may expand to full size when placed

in warm water. On the other hand, a fully

inflated balloon when immersed in cold water

would start shrinking due to contraction of the

air inside.

It is our common experience that most

substances expand on heating and contract on

cooling. A change in the temperature of a body

causes change in its dimensions. The increase

in the dimensions of a body due to the increase

in its temperature is called thermal expansion.

The expansion in length is called linear

expansion. The expansion in area is called area

expansion. The expansion in volume is called

volume expansion (Fig. 11.5).

Fig. 11.5  Thermal Expansion.

If the substance is in the form of a long rod,

then for small change in temperature, ∆T, the

fractional change in length, ∆l/l, is directly

proportional to ∆T.

∆
∆

l

l
T=α1 (11.4)

where α
1 
is known as the coefficient of linear

expansion (or linear expansivity) and is

characteristic of the material of the rod. In Table

11.1, typical average values of the coefficient of

linear expansion for some material in the

temperature range 0 °C to 100 °C are given. From

this Table, compare the value of α
l
 for glass and

copper. We find that copper expands about five

times more than glass for the same rise in

temperature. Normally, metals expand more and

have relatively high values of α
l
.

Table 11.1 Values of coef ficient of linear

expansion for some material

Material ααααα
l
 (10–5 K–1)

Aluminium 2.5
Brass 1.8
Iron 1.2
Copper 1.7
Silver 1.9
Gold 1.4
Glass (pyrex) 0.32
Lead 0.29

Similarly, we consider the fractional change

in volume, 
∆V

V
, of a substance for temperature

change ∆T and define the coefficient of volume

expansion (or volume expansivity), α  V  as

α  V =










∆

∆

V

V T

1
(11.5)

Here α
V
 is also a characteristic of the

substance but is not strictly a constant. It
depends in general on temperature (Fig 11.6). It
is seen that α

V
 becomes constant only at a high

temperature.

Fig. 11.6 Coefficient of volume expansion of copper

as a function of temperature.

Table 11.2 gives the values of coefficient of

volume expansion of some common substances

in the temperature range 0–100 °C. You can see

that thermal expansion of these substances

(solids and liquids) is rather small, with material,

l

l
a T

l

∆
= ∆ l2

A
a T

A

∆
= ∆ l3

V
a T

V

∆
= ∆

(a) Linear expansion (b) Area expansion (c) Volume expansion
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like pyrex glass and invar (a special iron-nickel
alloy) having particularly low values of α

V
. From

this Table we find that the value of α
v
 for

alcohol (ethanol) is more than mercury and
expands more than mercury for the same rise
in temperature.

Table 11.2 Values of coefficient of volume
expansion for some substances

Material ααααα
v
 ( K–1)

Aluminium 7 × 10–5

Brass 6 × 10–5

Iron 3.55 × 10–5

Paraffin 58.8 × 10–5

Glass (ordinary) 2.5 × 10–5

Glass (pyrex) 1 × 10–5

Hard rubber 2.4 × 10–4

Invar 2 × 10–6

Mercury 18.2 × 10–5

Water 20.7 × 10–5

Alcohol (ethanol) 110 × 10–5

Water exhibits an anomalous behaviour; it

contracts on heating between 0 °C and 4 °C.

The volume of a given amount of water decreases
as it is cooled from room temperature, until its

temperature reaches 4 °C, [Fig. 11.7(a)]. Below

4 °C, the volume increases, and therefore, the

density decreases [Fig. 11.7(b)].
This means that water has the maximum

density at 4 °C. This property has an important

environmental effect: bodies of water, such as

lakes and ponds, freeze at the top first. As a lake

cools toward 4 °C, water near the surface loses

energy to the atmosphere, becomes denser, and
sinks; the warmer, less dense water near the
bottom rises. However, once the colder water on

top reaches temperature below 4 °C, it becomes

less dense and remains at the surface, where it
freezes. If water did not have this property, lakes
and ponds would freeze from the bottom up,
which would destroy much of their animal and
plant life.

Gases, at ordinary temperature, expand more

than solids and liquids. For liquids, the
coefficient of volume expansion is relatively

independent of the temperature. However, for

gases it is dependent on temperature. For an

ideal gas, the coefficient of volume expansion at

constant pressure can be found from the ideal

gas equation:
PV = µRT

At constant pressure
P∆V = µR ∆T

∆ ∆V

V

T

T
=

i.e., αv
T

=
1

 for ideal gas (11.6)

At 0 °C, α
v
 = 3.7 × 10–3 K–1, which is much

larger than that for solids and liquids.
Equation (11.6) shows the temperature
dependence of α

v
; it decreases with increasing

temperature. For a gas at room temperature and
constant pressure, α

v
 is about 3300 × 10–6 K–1, as

Temperature (°C) Temperature (°C)
(a) (b)

Fig. 11.7 Thermal expansion of water.
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much as order(s) of magnitude larger than the
coefficient of volume expansion of typical liquids.

There is a simple relation between the
coefficient of volume expansion (α

v
) and

coefficient of linear expansion (α
l
). Imagine a

cube of length, l, that expands equally in all
directions, when its temperature increases by
∆T. We have

∆l = α
l
 l ∆T

so, ∆V = (l+∆l)3 – l3 �  3l2 ∆l (11.7)
In Equation (11.7), terms in (∆l)2 and (∆l)3 have

been neglected since ∆l is small compared to l.
So

∆
∆

∆V
V l

l
V Tl= =

3
3 α (11.8)

which gives

α
v
 = 3α

l
(11.9)

What happens by preventing the thermal
expansion of a rod by fixing its ends rigidly?
Clearly, the rod acquires a compressive strain
due to the external forces provided by the rigid
support at the ends. The corresponding stress
set up in the rod is called thermal stress. For
example, consider a steel rail of length 5 m and
area of cross-section 40 cm2 that is prevented
from expanding while the temperature rises by

10 °C. The coefficient of linear expansion of steel

is α
l(steel) 

= 1.2 × 10–5  K–1. Thus, the compressive

strain is 
∆l

l
= α

l(steel) 
∆T = 1.2 × 10–5 × 10=1.2 × 10–4.

Youngs modulus of steel is Y
 (steel)

 = 2 × 1011 N m–2.
Therefore, the thermal stress developed is

∆ ∆F

A
Y

l

l
steel=









 = 2.4 × 107 N m–2, which

corresponds to an external force of

∆F = AY
steel

 
∆l

l









  =  2.4 × 107 × 40 × 10–4 j 105N.

If two such steel rails, fixed at their outer ends,
are in contact at their inner ends, a force of this
magnitude can easily bend the rails.

Example 11.1 Show that the coefficient
of area expansion, (∆A/A)/∆T, of a
rectangular sheet of the solid is twice its
linear expansivity, α

l
.

Answer

Fig. 11.8

Consider a rectangular sheet of the solid
material of length a and breadth b (Fig. 11.8 ).
When the temperature increases by ∆T, a

increases by  ∆a = α
l 
a∆T and b increases by ∆b

= α
l
b ∆T. From Fig. 11.8,  the increase in area
∆A = ∆A

1
 +∆A

2
 + ∆A

3

∆A = a ∆b + b ∆a + (∆a)  (∆b)
= a α

l
b ∆T + b α

l
 a ∆T + (α

l
)2 ab (∆T)2

= α
l
 ab ∆T (2 + α

l
 ∆T) = α

l
 A ∆T (2 + α

l
 ∆T)

Since α
l �

 10–5 K–1, from Table 11.1, the

product α
l
 ∆T for fractional temperature is small

in comparision with 2 and may be neglected.
Hence,

t

Example 11.2 A blacksmith fixes iron ring
on the rim of the wooden wheel of a horse
cart. The diameter of the rim and the iron
ring are 5.243 m and 5.231 m, respectively
at 27 °C. To what temperature should the
ring be heated so as to fit the rim of the
wheel?

Answer

Given, T
1
 = 27 °C

L
T1

 = 5.231 m

L
T2

 = 5.243 m

So,
L

T2
 =L

T1
 [1+α

l 
(T

2
–T

1
)]

5.243 m = 5.231 m [1 + 1.20×10–5  K–1 (T
2
–27 °C)]

or T
2
 = 218 °C.t

∆A
3
 = (∆a) (∆b)

∆A
l
 = a (∆b)

∆A
2
 = b (∆a)

a

b

∆b

∆a
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11.6  SPECIFIC HEAT CAPACITY

Take some water in a vessel and start heating it
on a burner. Soon you will notice that bubbles
begin to move upward. As the temperature is
raised the motion of water particles increases
till it becomes turbulent as water starts boiling.
What are the factors on which the quantity of
heat required to raise the temperature of a
substance depend? In order to answer this
question in the first step, heat a given quantity
of water to raise its temperature by, say 20 °C
and note the time taken. Again take the same
amount of water and raise its temperature by
40 °C using the same source of heat. Note the
time taken by using a stopwatch. You will find
it takes about twice the time and therefore,
double the quantity of heat required raising twice
the temperature of same amount of water.

In the second step, now suppose you take
double the amount of water and heat it, using
the same heating arrangement, to raise the
temperature by 20 °C, you will find the time
taken is again twice that required in the first
step.

In the third step, in place of water, now heat
the same quantity of some oil, say mustard oil,
and raise the temperature again by 20 °C. Now
note the time by the same stopwatch. You will
find the time taken will be shorter and therefore,
the quantity of heat required would be less than
that required by the same amount of water for
the same rise in temperature.

The above observations show that the quantity
of heat required to warm a given substance
depends on its mass, m, the change in
temperature, ∆T and the nature of substance.
The change in temperature of a substance, when
a given quantity of heat is absorbed or rejected
by it, is characterised by a quantity called the
heat capacity of that substance. We define heat
capacity, S of a substance as

Q
S

T

∆
=

∆
(11.10)

where ∆Q is the amount of heat supplied to
the substance to change its temperature from T

to T + ∆T.
You have observed that if equal amount of

heat is added to equal masses of different
substances, the resulting temperature changes
will not be the same. It implies that every
substance has a unique value for the amount of

heat absorbed or given off to change the
temperature of unit mass of it by one unit. This
quantity is referred to as the specific heat
capacity of the substance.

If ∆Q stands for the amount of heat absorbed
or given off by a substance of mass m when it
undergoes a temperature change ∆T, then the
specific heat capacity, of that substance is given
by

1S Q
s

m m T

∆
= =

∆
(11.11)

The specific heat capacity is the property of
the substance which determines the change in
the temperature of the substance (undergoing
no phase change) when a given quantity of heat
is absorbed (or given off) by it. It is defined as the
amount of heat per unit mass absorbed or given
off by the substance to change its temperature
by one unit. It depends on the nature of the
substance and its temperature. The SI unit of
specific heat capacity is J kg–1 K–1.

If the amount of substance is specified in
terms of moles µ, instead of mass m in kg, we
can define heat capacity per mole of the
substance by

C
S Q

T
= =

µ µ

1 ∆

∆
(11.12)

where C is known as molar specific heat
capacity of the substance. Like S, C also
depends on the nature of the substance and its

temperature. The SI unit of molar specific heat

capacity is J mol–1 K–1.

However, in connection with specific heat

capacity of gases, additional conditions may be

needed to define C. In this case, heat transfer
can be achieved by keeping either pressure or

volume constant. If the gas is held under

constant pressure during the heat transfer, then

it is called the molar specific heat capacity at
constant pressure and is denoted by C

p
. On

the other hand, if the volume of the gas is
maintained during the heat transfer, then the

corresponding molar specific heat capacity is

called molar specific heat capacity at constant
volume and is denoted by C

v
. For details see

Chapter 12. Table 11.3 lists measured specific

heat capacity of some substances at atmospheric
pressure and ordinary temperature while Table

11.4 lists molar specific heat capacities of some

gases. From Table 11.3 you can note that water

2020-21



THERMAL PROPERTIES OF MATTER 285

t

has the highest specific heat capacity compared
to other substances. For this reason water is also
used as a coolant in automobile radiators, as
well as, a heater in hot water bags. Owing to its
high specific heat capacity, water warms up
more slowly than land during summer, and
consequently wind from the sea has a cooling
effect. Now, you can tell why in desert areas,
the earth surface warms up quickly during the
day and cools quickly at night.

Table 11.4 Molar specific heat capacities of

some gases

Gas C
p
 (J mol–1K–1)  C

v
(J mol–1K–1)

He 20.8 12.5

H
2

28.8 20.4

N
2

29.1 20.8

O
2

29.4 21.1

CO
2

37.0 28.5

11.7  CALORIMETRY

A system is said to be isolated if no exchange or
transfer of heat occurs between the system and
its surroundings. When different parts of an
isolated system are at different temperature, a
quantity of heat transfers from the part at higher
temperature to the part at lower temperature.
The heat lost by the part at higher temperature
is equal to the heat gained by the part at lower
temperature.

Calorimetry means measurement of heat.
When a body at higher temperature is brought
in contact with another body at lower
temperature, the heat lost by the hot body is

equal to the heat gained by the colder body,

provided no heat is allowed to escape to the

surroundings. A device in which heat

measurement can be done is called a

calorimeter. It consists of a metallic vessel and

stirrer of the same material, like copper or

aluminium. The vessel is kept inside a wooden

jacket, which contains heat insulating material,

like glass wool etc. The outer jacket acts as a

heat shield and reduces the heat loss from the

inner vessel. There is an opening in the outer

jacket through which a mercury thermometer

can be inserted into the calorimeter (Fig. 11.20).

The following example provides a method by

which the specific heat capacity of a given solid

can be determinated by using the principle, heat

gained is equal to the heat lost.

Example 11.3 A sphere of 0.047 kg
aluminium is placed for sufficient time in a
vessel containing boiling water, so that the
sphere is at 100 °C. It is then immediately
transfered to 0.14 kg copper calorimeter
containing 0.25 kg water at 20 °C. The
temperature of water rises and attains a
steady state at 23 °C. Calculate the specific
heat capacity of aluminium.

Answer  In solving this example, we shall use
the fact that at a steady  state, heat given by an
aluminium sphere will be equal to the heat
absorbed by the water and calorimeter.
Mass of aluminium sphere (m

1
) = 0.047 kg

Initial temperature of aluminium sphere = 100 °C
Final temperature = 23 °C

Change in temperature (∆T)=(100 °C -23 °C) = 77 °C

Let specific heat capacity of aluminium be s
Al
.

Table 11.3 Specific heat capacity of some substances at room temperature and atmospheric

pressure

Substance Specific heat capacity Substance Specific heat capacity
 (J kg–1 K–1) (J kg–1 K–1)

Aluminium 900.0 Ice 2060
Carbon 506.5 Glass 840
Copper 386.4 Iron 450
Lead 127.7 Kerosene 2118
Silver 236.1 Edible oil 1965
Tungesten 134.4 Mercury 140
Water 4186.0
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The amount of heat lost by the aluminium

sphere =  ∆ = × × °1 0.047kg 77 CAl Alm s T s

Mass of water (m
2
) = 0.25 kg

Mass of calorimeter (m
3
) = 0.14 kg

Initial temperature of water and calorimeter=20 °C

Final temperature of the mixture = 23 °C

Change in temperature (∆T
2
) = 23 °C – 20 °C = 3 °C

Specific heat capacity of water (s
w
)

= 4.18 × 103 J kg–1  K–1

Specific heat capacity of copper calorimeter

= 0.386 × 103 J kg–1  K–1

The amount of heat gained by water and

calorimeter = m
2
 s

w
 ∆T

2
 + m

3
s

cu
∆T

2

= (m
2
s

w
 + m

3
s

cu
) (∆T

2
)

= (0.25 kg × 4.18 × 103 J kg–1  K–1 + 0.14 kg ×

0.386 × 103 J kg–1  K–1) (23 °C – 20 °C)

In the steady state heat lost by the aluminium

sphere = heat gained by water + heat gained by

calorimeter.

So, 0.047 kg × s
Al
 × 77 °C

= (0.25 kg × 4.18 × 103 J kg–1  K–1+ 0.14 kg ×

0.386 × 103 J kg–1  K–1)(3 °C)

s
Al
 = 0.911 kJ kg –1 K–1 t

11.8  CHANGE OF STATE

Matter normally exists in three states: solid,

liquid and gas. A transition from one of these

states to another is called a change of state. Two

common changes of states are solid to liquid

and liquid to gas (and, vice versa). These changes

can occur when the exchange of heat takes place

between the substance and its surroundings.

To study the change of state on heating or

cooling, let us perform the following activity.

Take some cubes of ice in a beaker. Note the

temperature of ice. Start heating it slowly on a

constant heat source. Note the temperature after

every  minute.  Continuously stir the mixture of

water and ice. Draw a graph between

temperature and time (Fig. 11.9). You will

observe no change in the temperature as long

as there is ice in the beaker. In the above process,

the temperature of the system does not change

even though heat is being continuously supplied.

The heat supplied  is being utilised in changing

the state from solid (ice) to liquid (water).

Fig. 11.9 A plot of temperature versus time showing

the changes in the state of ice on heating

(not to scale).

The change of state from solid to liquid is

called melting and from liquid to solid is called

fusion. It is observed that the temperature

remains constant until the entire amount of the

solid substance melts. That is, both the solid
and the liquid states of the substance coexist
in thermal equilibrium during the change of

states from solid to liquid. The temperature

at which the solid and the liquid states of the

substance is in thermal equilibrium with each

other is called its melting point. It is

characteristic of the substance. It also depends

on pressure. The melting point of a substance

at standard atomspheric pressure is called its

normal melting point. Let us do the following

activity to understand the process of melting

of ice.

Take a slab of ice. Take a metallic wire and

fix two blocks, say 5 kg each, at its ends. Put

the wire over the slab as shown in Fig. 11.10.

You will observe that the wire passes through

the ice slab. This happens due to the fact that

just below the wire, ice melts at lower

temperature due to increase in pressure. When

the wire has passed, water above the wire freezes

again. Thus, the wire passes through the slab

and the slab does not split. This phenomenon

of refreezing is called regelation. Skating is

possible on snow due to the formation of water

under the skates. Water is formed due to the

increase of pressure and it acts as a

lubricant.
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Fig. 11.10

After the whole of ice gets converted into water
and as we continue further heating, we shall see
that temperature begins to rise (Fig.11.9). The
temperature keeps on rising till it reaches nearly

100 °C when it again becomes steady. The heat

supplied is now being utilised to change water

from liquid state to vapour or  gaseous state.

The change of state from liquid to vapour (or

gas) is called vaporisation. It is observed that

the temperature remains constant until the

entire amount of the liquid is converted into

vapour. That is, both the liquid and vapour states

of the substance coexist in thermal equilibrium,

during the change of state from liquid to vapour.

The temperature at which the liquid and the

vapour states of the substance coexist is called

its boiling point. Let us do the following activity

to understand the process of boiling of water.

Take a round-bottom flask, more than half

filled with water. Keep it over a burner and fix a

Triple Point

The temperature of a substance remains constant during its change of state (phase change).
A graph between the temperature T and the Pressure P of the substance is called a phase
diagram or P – T diagram. The following figure shows the phase diagram of water and CO

2
.

Such a phase diagram divides the P – T plane into a solid-region, the vapour-region and the
liquid-region. The regions are separated by the curves such as sublimation curve (BO), fusion
curve (AO) and vaporisation curve (CO). The points on sublimation curve represent states
in which solid and vapour phases coexist. The point on the sublimation curve BO represent
states in which the solid and vapour phases co-exist. Points on the fusion curve AO represent
states in which solid and liquid phase coexist. Points on the vapourisation curve CO represent
states in which the liquid and vapour phases coexist. The temperature and pressure at which
the fusion curve, the vaporisation curve and the sublimation curve meet and all the three
phases of  a substance coexist is called the triple point of the substance. For example the
triple point of water is represented by the temperature 273.16 K and pressure 6.11×10–3 Pa.

(a) (b)

Fig. 11.11:  Pressure-temperature phase diagrams for (a) water and (b) CO
2
 (not to the scale).
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thermometer and steam outlet through the cork

of the flask (Fig. 11.11). As water gets heated in

the flask, note first that the air, which was

dissolved in the water, will come out as small

bubbles. Later, bubbles of steam will form at

the bottom but as they rise to the cooler water

near the top, they condense and disappear.

Finally, as the temperature of the entire mass

of the water reaches 100 °C, bubbles of steam

reach the surface and boiling is said to occur.

The steam in the flask may not be visible but as

it comes out of the flask, it condenses as tiny

droplets of water, giving a foggy appearance.

Fig. 11.11 Boiling process.

If now the steam outlet is closed for a few

seconds to increase the pressure in the flask,

you will notice that boiling stops. More heat

would be required to raise the temperature

(depending on the increase in pressure) before

boiling begins again. Thus boiling point increases

with increase in pressure.

Let us now remove the burner. Allow water to

cool to about 80 °C. Remove the thermometer and

steam outlet. Close the flask with the airtight

cork. Keep the f lask turned upside down on the

stand. Pour ice-cold water on the flask. Water

vapours in the flask condense reducing the

pressure on the water surface inside the flask.

Water begins to boil again, now at a lower

temperature. Thus boiling point decreases with

decrease in pressure.

This explains why cooking is difficult on hills.

At high altitudes, atmospheric pressure is lower,

reducing the boiling point of water as compared

to that at sea level. On the other hand, boiling

point is increased inside a pressure cooker by

increasing the pressure. Hence cooking is faster.

The boiling point of a substance at standard

atmospheric pressure is called its normal

boiling point.

However, all substances do not pass through

the three states: solid-liquid-gas. There are

certain substances which normally pass from

the solid to the vapour state directly and vice

versa. The change from solid state to vapour

state without passing through the liquid state

is called sublimation, and the substance is said

to sublime. Dry ice (solid CO
2
) sublimes, so also

iodine. During the sublimation process both the

solid and vapour states of a substance coexist

in thermal equilibrium.

11.8.1  Latent Heat

In Section 11.8, we have learnt that certain

amount of heat energy is transferred between a

substance and its surroundings when it

undergoes a change of state. The amount of heat

per unit mass transferred during change of state

of the substance is called latent heat of the

substance for the process. For example, if heat

is added to a given quantity of ice at –10 °C, the

temperature of ice increases until it reaches its

melting point (0 °C). At this temperature, the

addition of more heat does not increase the

temperature but causes the ice to melt, or

changes its state. Once the entire ice melts,

adding more heat will cause the temperature of

the water to rise. A similar situation

occurs during liquid gas change of state at the

boiling point. Adding more heat to boiling water

causes vaporisation, without increase in

temperature.
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The heat required during a change of state

depends upon the heat of transformation and

the mass of the substance undergoing a change

of state. Thus, if mass m of a substance

undergoes a change from one state to the other,

then the quantity of heat required is given by

Q = m L

or L = Q/m (11.13)

where L is known as latent heat and is a

characteristic of the substance. Its SI unit is

J kg–1. The value of L also depends on the

pressure. Its value is usually quoted at standard

atmospheric pressure. The latent heat for a solid-

liquid state change is called the latent heat of

fusion (L
f
), and that for a liquid-gas state change

is called the latent heat of vaporisation (L
v
).

These are often referred to as the heat of fusion

and the heat of vaporisation. A plot of

temperature versus heat  for a quantity of water

is shown in Fig. 11.12. The latent heats of some

substances, their freezing and boiling points, are

given in Table 11.5.

Fig. 11.12 Temperature versus heat for water at

1 atm pressure (not to scale).

Note that when heat is added (or removed)

during a change of state, the temperature

remains constant. Note in Fig. 11.12 that the

slopes of the phase lines are not all the same,

which indicate that specific heats of the various

states are not equal. For water, the latent heat of

fusion and vaporisation are L
f
 = 3.33 × 105 J kg–1

and L
v
 = 22.6 × 105 J kg–1, respectively. That is,

3.33 × 105 J of heat is needed to melt 1 kg ice at

0 °C, and 22.6 × 105 J of heat is needed to convert

1 kg  water into steam at 100 °C. So, steam at

100 °C carries  22.6 × 105 J  kg–1 more heat than

water at 100 °C. This is why burns from steam

are usually more serious than those from

boiling water.

Example 11.4 When 0.15 kg of ice at 0 °C
is mixed with 0.30 kg of water at 50 °C in a
container, the resulting temperature is
6.7 °C. Calculate the heat of fusion of ice.
(s

water
 = 4186 J kg–1 K–1)

Answer

Heat lost by water = ms
w
 (θ

f
–θ

i
)
w

= (0.30 kg) (4186 J kg–1 K–1) (50.0 °C – 6.7 °C)

= 54376.14 J

Heat required to melt ice = m
2
L

f
 = (0.15 kg) L

f

Heat required to raise temperature of ice

water to final temperature = m
I
s

w
 (θ

f
–θ

i
)
I

= (0.15 kg) (4186 J kg–1 K –1) (6.7 °C – 0 °C)

= 4206.93 J

Heat lost = heat gained

54376.14 J = (0.15 kg ) L
f
 + 4206.93 J

L
f
 = 3.34×105 J kg–1. t

Table 11.5 Temperatures of the change of state and latent heats for various substances at

1 atm pressure

Substance Melting L
f

Boiling L
v

Point (°C) (105J kg–1) Point (°C) (105J kg–1)

Ethanol –114 1.0 78 8.5

Gold 1063 0.645 2660 15.8

Lead 328 0.25 1744 8.67

Mercury –39 0.12 357 2.7

Nitrogen –210 0.26 –196 2.0

Oxygen –219 0.14 –183 2.1

Water 0 3.33 100 22.6
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Example 11.5 Calculate the heat required
to convert 3 kg of ice at –12 °C kept in a

calorimeter to steam at 100  °C at
atmospheric pressure. Given specific heat
capacity of ice = 2100 J kg–1 K–1, specific heat
capacity of water = 4186 J kg– 1 K–1, latent
heat of fusion of ice = 3.35 × 105 J kg–1

and latent heat of steam = 2.256 ×106 J kg–1.

Answer  We have
Mass of the ice, m = 3 kg

specific heat capacity of ice, s
ice

= 2100 J kg–1  K–1

specific heat capacity of water, s
water

= 4186 J kg–1  K–1

latent heat of fusion of ice, L
f ice

= 3.35 × 105 J kg–1

latent heat of steam, L
steam

= 2.256 × 106 J kg–1

Now, Q = heat required to convert 3 kg of

ice at –12 °C to steam at 100 °C,

Q
1

= heat required to convert ice at

–12 °C to ice at 0 °C.

= m s
ice

 ∆T
1
 = (3 kg) (2100 J kg–1.

K–1) [0–(–12)]°C = 75600 J

Q
2

= heat required to melt ice at

0 °C to water at 0 °C

= m L
f ice

 = (3 kg) (3.35 × 105 J kg–1)

=  1005000 J

Q
3

= heat required to convert water

at 0 °C to water at 100 °C.

= ms
w
 ∆T

2 
= (3kg) (4186J kg–1 K–1)

(100 °C)

= 1255800 J

Q
4

= heat required to convert water

at 100 °C to steam at 100 °C.

= m L
steam

 = (3 kg) (2.256×106

J kg–1)

= 6768000 J

So, Q = Q
1 
+ Q

2 
+ Q

3 
+ Q

4

= 75600J + 1005000 J

+ 1255800 J + 6768000 J

= 9.1×106 J t

11.9  HEAT TRANSFER

We have seen that heat is energy transfer
from one system to another or from one part
of a system to another part, arising due to

temperature difference. What are the different
ways by which this energy transfer takes
place? There are three distinct modes of heat
transfer: conduction, convection and radiation
(Fig. 11.13).

Fig. 11.13 Heating by conduction, convection and

radiation.

11.9.1  Conduction

Conduction is the mechanism of transfer of heat
between two adjacent parts of a body because
of their temperature difference. Suppose, one end
of a metallic rod is put in a flame, the other end
of the rod will soon be so hot that you cannot
hold it by your bare hands. Here, heat transfer
takes place by conduction from the hot end of
the rod through its different parts to the other
end.  Gases are poor thermal conductors, while
liquids have conductivities intermediate between
solids and gases.

Heat conduction may be described
quantitatively as the time rate of heat flow in a
material for a given temperature difference.
Consider a metallic bar of length L and uniform
cross-section A with its two ends maintained at
different temperatures. This can be done, for
example, by putting the ends in thermal contact
with large reservoirs at temperatures, say, T

C 
and

T
D
, respectively (Fig. 11.14). Let us assume the

ideal condition that the sides of the bar are fully
insulated so that no heat is exchanged between
the sides and the surroundings.

After sometime, a steady state is reached; the
temperature of the bar decreases uniformly with
distance from T

C
 to T

D
; (T

C
>T

D
). The reservoir at

C supplies heat at a constant rate, which
transfers through the bar and is given out at
the same rate to the reservoir at D. It is found
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experimentally that in this steady state, the rate
of flow of heat (or heat current) H is proportional
to the temperature difference (T

C
 – T

D
) and the

area of cross-section A and is inversely
proportional to the length L :

H = KA 
–C DT T

L
(11.14)

The constant of proportionality K is called the

thermal conductivity of the material. The
greater the value of K for a material, the more

rapidly will it conduct heat. The SI unit of K is
J s–1 m –1 K–1 or W m –1 K–1. The thermal
conductivities of various substances are listed

in Table 11.6. These values vary slightly with
temperature, but can be considered to be

constant over a normal temperature range.
Compare the relatively large thermal

conductivities of  good thermal conductors and,

metals, with the relatively small thermal
conductivities of some good thermal insulators,

such as wood and glass wool. You may have
noticed that some cooking pots have copper

coating on the bottom. Being a good conductor
of heat, copper promotes the distribution of heat
over the bottom of a pot for uniform cooking.

Plastic foams, on the other hand, are good
insulators, mainly because they contain pockets

of air. Recall that gases are poor conductors,
and note the low thermal conductivity of air in
the Table 11.5. Heat retention and transfer are

important in many other applications. Houses
made of concrete roofs get very hot during

summer days because thermal conductivity of
concrete (though much smaller than that of a

metal) is still not small enough. Therefore, people,
usually, prefer to give a layer of earth or foam
insulation on the ceiling so that heat transfer is

prohibited and keeps the room cooler. In some
situations, heat transfer is critical. In a nuclear
reactor, for example, elaborate heat transfer
systems need to be installed so that the
enormous energy produced by nuclear fission
in the core transits out sufficiently fast, thus
preventing the core from overheating.

Table 11.6 Thermal conductivities of some
      material

Material Thermal conductivity
(J s–1 m–1 K–1 )

Metals

Silver 406
Copper 385
Aluminium 205
Brass 109
Steel 50.2
Lead 34.7
Mercury 8.3

Non-metals

Insulating brick 0.15
Concrete 0.8
Body fat 0.20
Felt 0.04
Glass 0.8
Ice 1.6
Glass wool 0.04
Wood 0.12
Water 0.8

Gases

Air 0.024
Argon 0.016
Hydrogen 0.14

Example 11.6 What is the temperature of
the steel-copper junction in the steady
state of the system shown in Fig. 11.15.
Length of the steel rod = 15.0 cm, length
of the copper rod = 10.0 cm, temperature
of the furnace = 300 °C, temperature of
the other end = 0 °C. The area of cross
section of the steel rod is twice that of the
copper rod. (Thermal conductivity of steel
= 50.2 J s –1 m–1K –1; and of copper
= 385 J s–1m–1K–1).

Fig. 11.14 Steady state heat flow by conduction in

a bar with its two ends maintained at

temperatures T
C
 and T

D
; (T

C
 > T

D
).
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Fig. 11.15

Answer  The insulating material around the
rods reduces heat loss from the sides of the rods.
Therefore, heat flows only along the length of
the rods. Consider any cross section of the rod.
In the steady state, heat flowing into the element
must equal the heat flowing out of it; otherwise
there would be a net gain or loss of heat by the
element and its temperature would not be
steady. Thus in the steady state, rate of heat
flowing across a cross section of the rod is the
same at every point along the length of the
combined steel-copper rod. Let T be the
temperature of the steel-copper junction in the
steady state. Then,

( ) ( )1 1 2 2

1 2

300 0K  A T K  A T –
= 

L L

−

where 1 and 2 refer to the steel and copper rod
respectively.  For A

1
 = 2 A

2
, L

1
 = 15.0 cm,

L
2
 = 10.0 cm, K

1
 = 50.2 J s–1 m–1 K –1, K

2
 = 385 J

s–1 m–1 K –1, we have

( )50.2  2 300 385

15 10

T T
= 

× −

which gives T = 44.4 °C t

Example 11.7 An iron bar (L
1
 = 0.1 m, A

1

= 0.02 m2, K
1
 = 79 W m–1 K–1) and a

brass bar (L
2
 = 0.1 m, A

2
 = 0.02 m2,

K
2
 = 109 W m–1K–1) are soldered end to end

as shown in  Fig. 11.16.   The free ends of
the iron bar and brass bar are maintained
at 373 K and 273 K respectively. Obtain
expressions for and hence compute (i) the
temperature of the junction of the two bars,
(ii) the equivalent thermal conductivity of
the compound bar, and (iii) the heat
current through the compound bar.

Fig 11.16

Answer
Given, L

1
 = L

2
= L = 0.1 m, A

1
 = A

2
= A= 0.02 m2

K
1
 = 79 W m–1 K –1, K

2
 = 109 W m–1 K–1,

T
1
 = 373 K, and T

2
 = 273 K.

Under steady state condition, the heat
current (H

1
) through iron bar is equal to the

heat current (H
2
) through brass bar.

So, H = H
1
 = H

2

  =  
( )1 1 1 0 2 2 0 2

1 2

– ( – )K A T T K A T T

L L
=

For A
1
 = A

2
 = A and L

1
 = L

2
 = L, this equation

leads to
K

1
 (T

1 
– T

0
) = K

2
 (T

0
 – T

2
)

Thus, the junction temperature T
0
 of the two

bars is

T
0
 = 

( )
( )
1 1 2 2

1 2

K T K T

K K

+

+

Using this equation, the heat current H through
either bar is

H =
( )1 1 0 2 0 2

– ( – )K A T T K A T T

L L
=

   

Using these equations, the heat current H′
through the compound bar of length L

1
 + L

2
 = 2L

and the equivalent thermal conductivity K′, of
the compound bar are given by

( )1 2–

2

K A T T
H H

L

′
= =′

1 2

1 2

2
=′

+

K K
K

K K

(i) 
( )

( )
1 1 2 2

0

1 2

K T K T
T

K K

+
=

+

     
( )( ) ( )( )–1 –1 –1 –1

–1 –1 –1 –1

79 m K 373K 109 W m K 273K

79 W m K 109 W m K

W +
=

+

= 315 K

(ii) 
1 2

1 2

2  
 = 

K K
K

K K
′

+

    = 

–1 –1 –1 –1

–1 –1 –1 –1

2×(79 W m K ) ×(109 W m K )

79 W m K +109 W m K

    = 91.6 W m–1 K–1
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(iii) 
( )1 2–

2

K A T T
H H

L

′
= =′

 
( ) ( ) ( )

( )

–1 –1 291.6 W m K × 0.02 m  × 373K–273K

2× 0.1 m
=

  = 916.1 W t

11.9.2  Convection

Convection is a mode of heat transfer by actual
motion of matter. It is  possible only in fluids.
Convection can be natural or forced. In natural
convection, gravity plays an important part.
When a fluid is heated from below, the hot part
expands and, therefore, becomes less dense.
Because of buoyancy, it rises and the upper
colder part replaces it. This again gets heated,
rises up and is replaced by the relatively colder
part of the fluid. The process goes on. This mode
of heat transfer is evidently different from
conduction. Convection involves bulk transport
of different parts of the fluid.
     In forced convection, material is forced to move
by a pump or by some other physical means. The
common  examples of forced convection systems
are forced-air heating systems in home, the
human circulatory system, and the cooling
system of an automobile engine. In the human
body, the heart acts as the pump that circulates
blood through different parts of the body,
transferring heat by forced convection and
maintaining it at a uniform temperature.

Natural convection is responsible for many
familiar phenomena. During the day, the
ground heats up more quickly than large bodies

of water do. This occurs both because water has

a greater specific heat capacity and because

mixing currents disperse the absorbed heat

throughout the great volume of water. The air

in contact with the warm ground is heated by

conduction. It expands, becoming less dense

than the surrounding cooler air. As a result, the

warm air rises (air currents) and the other air

moves (winds) to fill the space-creating a sea

breeze near a large body of water. Cooler air

descends, and a thermal convection cycle is set

up, which transfers heat away from the land.

At night, the ground loses its heat more quickly,

and the water surface is warmer than the land.

As a result, the cycle is reveresed (Fig. 11.17).

The other example of natural convection is

the steady surface wind on the earth blowing

in from north-east towards the equator, the

so-called trade wind. A resonable explanation

is as follows: the equatorial and polar regions of

the earth receive unequal solar heat. Air at the

earth’s surface near the equator is hot, while

the air in the upper atmosphere of the poles is

cool. In the absence of any other factor, a

convection current would be set up, with the

air at the equatorial surface rising and moving

out towards the poles, descending and

streaming in towards the equator. The rotation

of the earth, however, modifies this convection

current. Because of this, air close to the equator

has an eastward speed of 1600 km/h, while it

is zero close to the poles. As a result, the air

descends not at the poles but at 30° N (North)

latitude and returns to the equator. This is

called trade wind.

Fig. 11.17 Convection cycles.
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11.9.3  Radiation

Conduction and convection require some

material as a transport medium. These modes

of heat transfer cannot operate between bodies

separated by a distance in vacuum. But the

earth does receive heat from the Sun across a

huge distance. Similarly, we quickly feel the

warmth of the fire nearby even though air

conducts poorly and before convection takes

some time to set in. The third mechanism for

heat transfer needs no medium; it is called

radiation and the energy so transferred by

electromagnetic waves is called radiant energy.

In an electromagnetic wave, electric and

magnetic fields oscillate in space and time. Like

any wave, electromagnetic waves can have

different wavelengths and can travel in vacuum

with the same speed, namely the speed of light

i.e., 3 × 108 m s–1 . You will learn these matters

in more detail later, but you now know why heat

transfer by radiation does not need any medium

and why it is so fast. This is how heat is

transferred to the earth from the Sun through

empty space. All bodies emit radiant energy,

whether they are solid, liquid or gas.  The

electromagnetic radiation emitted by a body by

virtue of its temperature, like radiation by a red

hot iron or light from a filament lamp is called

thermal radiation.

When this thermal radiation falls on other

bodies, it is partly reflected and partly absorbed.

The amount of heat that a body can absorb by

radiation depends on the colour of the body.

We find that black bodies absorb and emit

radiant energy better than  bodies of lighter

colours. This fact finds many applications in our

daily life. We wear white or light coloured clothes

in summer, so that they absorb the least heat

from the Sun. However, during winter, we use

dark coloured clothes, which absorb heat from

the sun and keep our body warm. The bottoms of

utensils for cooking food are blackened so that

they absorb maximum heat from fire and transfer

it to the vegetables to be cooked.

Similarly, a Dewar flask or thermos bottle is

a device to minimise heat transfer between the

contents of the bottle and outside. It consists

of a double-walled glass vessel with the inner

and outer walls coated with silver. Radiation

from the inner wall is reflected back to the

contents of the bottle. The outer wall similarly

reflects back any incoming radiation. The space
between the walls is evacuted to reduce
conduction and convection losses and the flask
is supported on an insulator, like cork. The
device is, therefore, useful for preventing hot
contents (like, milk) from getting cold, or
alternatively, to store cold contents (like, ice).

11.9.4 Blackbody Radiation

We have so far not mentioned the wavelength
content of thermal radiation. The important
thing about thermal radiation at any
temperature is that it is not of one (or a few)
wavelength(s) but has a continuous spectrum
from the small to the long wavelengths. The
energy content of radiation, however, varies for
different wavelengths. Figure 11.18 gives the
experimental curves for radiation energy per unit
area per unit wavelength emitted by a blackbody
versus wavelength for different temperatures.

Fig. 11.18:  Energy emitted versus wavelength

for a blackbody at different

temperatures

Notice that the wavelength λ
m
 for which energy

is the maximum decreases with increasing
temperature. The relation between λ

m
 and T is

given by what is known as Wien’s Displacement
Law:

λ
m
 T  =  constant (11.15)

The value of the constant (Wien’s constant)

is 2.9 × 10–3 m K. This law explains why the

colour of a piece of iron heated in a hot flame

first becomes dull red, then reddish yellow, and

finally white hot. Wien’s law is useful for

estimating the surface temperatures of celestial

2020-21



THERMAL PROPERTIES OF MATTER 295

bodies like, the moon, Sun and other stars. Light

from the moon is found to have a maximum

intensity near the wavelength 14 µm. By Wien’s

law, the surface of the moon is estimated to have

a temperature of 200 K. Solar radiation has a

maximum at λ
m
 = 4753 Å. This corresponds to

T = 6060 K. Remember, this is the temperature

of the surface of the sun, not its interior.

The most significant feature of the
blackbody radiation curves in Fig. 11.18 is that
they are universal. They depend only on the
temperature and not on the size, shape or
material of the blackbody. Attempts to explain
blackbody radiation theoretically, at the
beginning of the twentieth century, spurred the
quantum revolution in physics, as you will
learn in later courses.

Energy can be transferred by radiation over

large distances, without a medium (i.e., in

vacuum). The total electromagnetic energy

radiated by a body at absolute temperature T

is proportional to its size, its ability to radiate

(called emissivity)  and most importantly to its

temperature. For a body, which is a perfect

radiator, the energy emitted per unit time (H)

is given by

H = AσT 4 (11.16)

where A  is the area and T is the absolute
temperature of the body.  This relation obtained
experimentally by Stefan and later proved
theoretically by Boltzmann is known as Stefan-
Boltzmann law and the constant σ is called
Stefan-Boltzmann constant. Its value in SI units
is 5.67 × 10–8 W m–2 K–4. Most bodies emit only a
fraction of the rate given by Eq. 11.16. A substance
like lamp black comes close to the limit. One,
therefore, defines a dimensionless fraction e

called emissivity and writes,

H = AeσT 4 (11.17)

Here, e = 1 for a perfect radiator. For a tungsten

lamp, for example, e is about 0.4. Thus, a tungsten

lamp at a temperature of 3000 K and a surface

area of 0.3 cm2 radiates at the rate  H = 0.3 ×

10–4 × 0.4 × 5.67 × 10–8 × (3000)4 = 60 W.

A body at temperature T, with surroundings

at temperatures T
s
, emits, as well as, receives

energy. For a perfect radiator, the net rate of

loss of radiant energy is

H = σA (T 4 – T
s
4)

For a body with emissivity e, the relation

modifies to

H = eσ A (T4 – T
s
4) (11.18)

As an example, let us estimate the heat

radiated by our bodies. Suppose the surface area

of a person’s body is about 1.9 m2 and the room

temperature is 22°C. The internal body

temperature, as we know, is about 37 °C.  The

skin temperature may be 28°C (say). The

emissivity of the skin is about 0.97 for the

relevant region of electromagnetic radiation. The

rate of heat loss is:

H = 5.67 × 10–8 × 1.9 × 0.97 × {(301)4 – (295)4}

 = 66.4 W

which is more than half the rate of energy

production by the body at rest (120 W). To

prevent this heat loss effectively (better than

ordinary clothing), modern arctic clothing has

an additional thin shiny metallic layer next to

the skin, which reflects the body’s radiation.

11.9.5 Greenhouse Effect

The earth’s surface  is a source of  thermal
radiation as it absorbs energy received from the
Sun. The wavelength of this radiation lies in the
long wavelength (infrared) region.  But a large
portion of this radiation is absorbed by
greenhouse gases, namely,  carbon dioxide
(CO

2
); methane (CH

4
); nitrous oxide (N

2
O);

chlorofluorocarbon (CF
x
Cl

x
); and tropospheric

ozone  (O
3
). This heats up the atmosphere which,

in turn, gives more energy to earth, resulting in
warmer surface. This increases the intensity of
radiation from the surface. The cycle of
processes described above is repeated until no
radiation is available for absorption. The net
result is heating up of earth’s surface and
atmosphere. This is known as Greenhouse
Effect. Without the Greenhouse Effect, the
temperature of the earth would have been –18°C.

Concentration of greenhouse gases has
enhanced due to human activities, making the
earth warmer. According to an estimate, average
temperature of earth has increased by 0.3 to
0.6°C, since the beginning of this century
because of this enhancement. By the middle of
the next century, the earth’s global temperature
may be 1 to 3°C higher than today. This global
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warming may cause problem for human life,
plants and animals. Because of global warming,
ice caps are melting faster, sea level is rising,
and weather pattern is changing. Many coastal
cities are at the risk of getting submerged. The
enhanced Greenhouse Effect may also result in
expansion of deserts. All over the world, efforts
are being made to minimise the effect of global
warming.

11.10  NEWTON’S LAW OF COOLING

We all know that hot water or milk when left on

a table begins to cool, gradually. Ultimately it
attains the temperature of the surroundings. To

study how slow or fast a given body can cool on

exchanging heat with its surroundings, let us

perform the following activity.
Take some water, say 300 mL, in a

calorimeter with a stirrer and cover it with a
two-holed lid. Fix the stirrer through one hole
and fix a thermometer through another hole
in the lid and make sure that the bulb of
thermometer is immersed in the water. Note
the reading of the thermometer. This reading
T

1
 is the temperature of the surroundings.

Heat the water kept in the calorimeter till it
attains a temperature, say 40 °C above room
temperature ( i .e. ,  temperature of the
surroundings). Then, stop heating the water
by removing the heat source. Start the
stop-watch and note the reading of the
thermometer after a fixed interval of time, say
after every one minute of stirring gently with
the stirrer. Continue to note the temperature
(T

2
) of water till it attains a temperature about

5 °C above that of the surroundings. Then, plot
a graph by taking each value of temperature
∆T = T

2
 – T

1
 along y-axis and the coresponding

value of  t along x-axis (Fig. 11.19).

Fig. 11.19 Curve showing cooling of hot water

with time.

From the graph you can infer how the cooling
of hot water depends on the difference of its
temperature from that of the surroundings. You
will also notice that initially the rate of cooling
is higher and decreases as the temperature of
the body falls.

The above activity shows that a hot body loses
heat to its surroundings in the form of heat
radiation. The rate of loss of heat depends on
the difference in temperature between the body
and its surroundings. Newton was the first to
study, in a systematic manner, the relation
between the heat lost by a body in a given
enclosure and its temperature.

According to Newton’s law of cooling, the rate
of loss of heat, – dQ/dt of the body is directly
proportional to the difference of temperature
∆T = (T

2
–T

1
) of the body and the surroundings.

The law holds good only for small difference of
temperature. Also, the loss of  heat by radiation
depends upon the nature of the surface of the
body and the area of the exposed surface. We
can write

– (11.19)

where k is a positive constant depending upon
the area and nature of the surface of the body.
Suppose a body of mass m and specific heat
capacity s is at temperature T

2
. Let T

1
 be the

temperature of the surroundings. If the
temperature falls by a small amount dT

2
 in time

dt, then the amount of heat lost is

dQ = ms dT
2

∴ Rate of loss of heat is given by

dQ

dt
ms

dT

dt
= 2

(11.20)

From Eqs. (11.15) and (11.16) we have

– ( – )m s
dT

dt
k T T2

2 1=

dT

T T

k

ms
dt K dt2

2 1–
– –= = (11.21)

where K = k/m s

On integrating,

log
e
 (T

2
 – T

1
) = – K t + c (11.22)

or T
2 
= T

1 
+ C′ e–Kt; where C′ = ec (11.23)

Equation 11.23 enables you to calculate the
time of cooling of a body through a particular
range of temperature.

∆

2020-21



THERMAL PROPERTIES OF MATTER 297

t

For small temperature differences, the rate
of cooling, due to conduction, convection, and
radiation combined, is proportional to the
difference in temperature. It is a valid
approximation in the transfer of heat from a
radiator to a room, the loss of heat through the
wall of a room, or the cooling of a cup of tea on
the table.

Fig. 11.20 Verification of Newton’s Law of cooling.

Newton’s law of cooling can be verified with
the help of the experimental set-up shown in
Fig. 11.20(a). The set-up consists of a double-
walled vessel (V) containing water  between
the two walls. A copper calorimeter (C)
containing hot water is placed inside the
double-walled vessel. Two thermometers
through the corks are used to note the
temperatures T

2
 of water in calorimeter and

T
1
 of hot water in between the double walls,

respectively. Temperature of hot water in the
calorimeter is noted after equal intervals of

time. A graph is plotted between log
e
 (T

2
–T

1
)

[or ln(T
2
–T

1
)] and time (t ). The nature of the

graph is observed to be a straight line having
a negative slope as shown in Fig. 11.20(b). This
is in support of Eq. 11.22.

Example 11.8  A pan filled with hot food
cools from 94 °C to 86 °C in 2 minutes when
the room temperature is at 20 °C. How long
will it take to cool from 71 °C to 69 °C?

Answer  The average temperature of 94 °C and
86 °C is 90 °C, which is 70 °C above the room
temperature. Under these conditions the pan
cools 8 °C in 2 minutes.

Using Eq. (11.21), we have

Change in temperature

Time
K T= ∆

( )
°

°
8 C

= 70 C
2 min

K

The average of 69 °C and 71 °C is 70 °C, which
is 50 °C above room temperature. K is the same
for this situation as for the original.

°2 C

Time
 = K (50 °C)

When we divide above two equations, we
have

8 C/2 min (70 C)
=

2 C/time (50 C)

K

K

° °

° °

Time = 0.7 min

        = 42 s t

SUMMARY

1. Heat is a form of energy that flows between a body and its surrounding medium by
virtue of temperature difference between them. The degree of hotness of the body is
quantitatively represented by temperature.

2. A temperature-measuring device (thermometer) makes use of some measurable property
(called thermometric property) that changes with temperature. Different thermometers
lead to different temperature scales. To construct a temperature scale, two fixed points
are chosen and assigned some arbitrary values of temperature. The two numbers fix
the origin of the scale and the size of its unit.

3. The Celsius temperature (t
C
) and the Farenheit temperare (t

F
)are related by

t
F
 = (9/5) t

C
 + 32

4. The ideal gas equation connecting pressure (P), volume (V) and absolute temperature (T)
is :

PV = µRT

where µ is the number of moles and R is the universal gas constant.
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5. In the absolute temperature scale, the zero of the scale  corresponds to the temperature
where every substance in nature has the least possible molecular activity. The Kelvin

absolute temperature scale (T ) has the same unit size as the Celsius scale (T
c 
), but

differs in the origin :

T
C
   =  T – 273.15

6. The coefficient of linear expansion (α
l
) and volume expansion (α

v
) are defined by the

relations :

l

l
T

l
α

∆
= ∆

V

V
T

V
α

∆
= ∆

where ∆l  and  ∆V denote the change in length l and volume V for a change of temperature
∆T.  The relation between them is :

α
v
  =  3 α

l

7. The specific heat capacity of a substance is defined by

s
m

Q

T
=

1 ∆

∆

where m is the mass of the substance and ∆Q is the heat required to change its
temperature by ∆T.  The molar specific heat capacity of a substance is defined by

1 Q
C

Tµ

∆
=

∆

where µ is the number  of moles of the substance.

8. The latent heat of fusion (L
f
) is the heat per unit mass required to change a substance

from solid into liquid at the same temperature and pressure. The latent heat of
vaporisation (L

v
) is the heat per unit mass required to change a substance from liquid

to the vapour state without change in the temperature and pressure.

9. The three modes of heat transfer are conduction, convection and radiation.

10. In conduction, heat is transferred between neighbouring parts of a body through
molecular collisions, without any flow of matter.  For a bar of length L and uniform
cross section A with its ends maintained at temperatures T

C
 and T

D
, the rate of flow of

heat H is :

 C D 
T T

H = K A
L

−

where K is the thermal conductivity of the material of the bar.

11. Newton’s Law of Cooling says that the rate of cooling of a body is proportional to the
excess temperature of the body over the surroundings :

2 1

d
( )

d

Q
 = – k T  – T    

t
Where T

1
 is the temperature of the surrounding medium and T

2
 is the temperature of

the body.
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POINTS TO PONDER

1. The relation connecting Kelvin temperature (T ) and the Celsius temperature t
c

T  =  t
c
 + 273.15

and the assignment T = 273.16 K for the triple point of water are exact relations (by
choice). With this choice, the Celsius temperature of the melting point of water and
boiling point of water (both at 1 atm pressure) are very close to, but not exactly equal
to 0 °C and 100 °C respectively.  In the original Celsius scale, these latter fixed points
were exactly at 0 °C and 100 °C (by choice), but now the triple point of water is the
preferred choice for the fixed point, because it has a unique temperature.

2. A liquid in equilibrium with vapour has the same pressure and temperature throughout
the system; the two phases in equilibrium differ in their molar volume (i.e. density).
This is true for a system with any number of phases in equilibrium.

3. Heat transfer always involves temperature difference between two systems or two parts
of the same system. Any energy transfer that does not involve temperature difference
in some way is not heat.

4. Convection involves flow of matter within a fluid due to unequal temperatures of its
parts. A hot bar placed under a running tap loses heat by conduction between the
surface of the bar and water and not by convection within water.

EXERCISES

11.1 The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively.
Express these temperatures on the Celsius and Fahrenheit scales.

11.2 Two absolute scales A and B have triple points of water defined to be 200 A and    350
B. What is the relation between TA and TB ?

11.3 The electrical resistance in ohms of a certain thermometer varies with temperature
according to the approximate law :

R = Ro [1 + α (T – To )]

The resistance is 101.6 Ω at the triple-point of water 273.16 K, and 165.5 Ω at the
normal melting point of lead (600.5 K). What is the temperature when the resistance
is 123.4 Ω ?

11.4 Answer the following :

(a) The triple-point of water is a standard fixed point in modern thermometry.
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Why ? What is wrong in taking the melting point of ice and the boiling point of

water as standard fixed points (as was originally done in the Celsius scale) ?

(b) There were two fixed points in the original Celsius scale as mentioned above

which were assigned the number 0 °C and 100 °C respectively. On the absolute

scale, one of the fixed points is the triple-point of water, which on the Kelvin
absolute scale is assigned the number 273.16 K. What is the other fixed point

on this (Kelvin) scale ?

(c) The absolute temperature (Kelvin scale) T is related to the temperature tc on

the Celsius scale by

tc = T – 273.15

Why do we have 273.15 in this relation, and not 273.16 ?

(d) What is the temperature of the triple-point of water on an absolute scale

whose unit interval size is equal to that of the Fahrenheit scale ?

11.5 Two ideal gas thermometers A and B use oxygen and hydrogen respectively.  The
following observations are made :

Temperature Pressure Pressure
thermometer A thermometer B

Triple-point of water 1.250 × 105 Pa 0.200 × 105 Pa

Normal melting point 1.797 × 105 Pa 0.287 × 105 Pa
of sulphur

(a) What is the absolute temperature of normal melting point of sulphur as read
by thermometers A and B ?

(b) What do you think is the reason behind the slight difference in answers of
thermometers A and B ? (The thermometers are not faulty). What further
procedure is needed in the experiment to reduce  the discrepancy between the
two readings ?

11.6 A steel tape 1m long is correctly calibrated for a temperature of 27.0 °C.  The
length of a steel rod measured by this tape is found to be 63.0 cm on a hot day
when the temperature is 45.0 °C. What is the actual length of the steel rod on that
day ? What is the length of the same steel rod on a day when the temperature is

27.0 °C ?  Coefficient of linear expansion of steel = 1.20 × 10–5 K–1 .

11.7 A large steel wheel is to be fitted on to a shaft of the same material. At 27 °C, the
outer diameter of the shaft is 8.70 cm and the diameter of the central hole in the
wheel is 8.69 cm. The shaft is cooled using ‘dry ice’. At what temperature of the
shaft does the wheel slip on the shaft? Assume coefficient of linear expansion of

the steel to be constant over the required temperature range :

α
steel 

= 1.20 × 10–5 K–1.

11.8 A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at 27.0 °C.
What is the change in the diameter of the hole when the sheet is heated to 227 °C?
Coefficient of linear expansion of copper = 1.70 × 10–5 K–1.

11.9 A brass wire 1.8 m long at 27 °C is held taut with little tension between two rigid
supports. If the wire is cooled to a temperature of –39 °C, what is the tension
developed in the  wire, if its diameter is 2.0 mm ?  Co-efficient of linear expansion
of  brass = 2.0 × 10–5 K–1; Young’s modulus of brass = 0.91 × 1011 Pa.

11.10 A brass rod of length 50 cm and diameter 3.0 mm is joined to a steel rod of the same
length and diameter. What is the change in length of the combined rod at 250 °C, if
the original lengths are at 40.0 °C?  Is there a ‘thermal stress’ developed at the
junction ? The ends of the rod are free to expand (Co-efficient of linear expansion of
brass = 2.0 × 10–5 K–1, steel = 1.2 × 10–5 K–1 ).
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11.11 The coefficient of volume expansion of glycerine is 49 × 10–5 K–1.  What is the
fractional change in its density for a 30 °C rise in temperature ?

11.12 A 10 kW drilling machine is used to drill a bore in a small aluminium block of
mass 8.0 kg.  How much is the rise in temperature of the block in 2.5 minutes,
assuming 50% of power is used up in heating the machine itself or lost to the
surroundings. Specific heat of aluminium = 0.91 J g–1 K–1.

11.13 A copper block of mass 2.5 kg is heated in a furnace to a temperature of 500 °C and
then placed on a large ice block.  What is the maximum amount of  ice that  can
melt?  (Specific heat of copper = 0.39 J g–1 K–1; heat of fusion of water
= 335 J g–1 ).

11.14 In an experiment on the specific heat of a metal, a 0.20 kg block of the metal at
150 °C is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing
150 cm3 of water at 27 °C.  The final temperature is 40 °C. Compute the specific
heat of the metal. If heat losses to the surroundings are not negligible, is your
answer greater or smaller than the actual value for specific heat of the metal ?

11.15 Given below are observations on molar specific heats at room temperature of some
common gases.

Gas Molar specific heat (Cv )
(cal mo1–1 K–1)

Hydrogen 4.87

Nitrogen 4.97

Oxygen 5.02

Nitric oxide 4.99

Carbon monoxide 5.01

        Chlorine     6.17

The measured molar specific heats of these gases are markedly different from
those for monatomic gases.  Typically, molar specific heat of a monatomic gas is
2.92 cal/mol K.  Explain this difference.  What can you infer from the somewhat
larger (than the rest) value for  chlorine ?

11.16 A child running a temperature of 101°F is given an antipyrin (i.e. a medicine that
lowers fever) which causes an increase in the rate of evaporation of sweat from his
body. If the fever is brought down to 98 °F in 20 minutes, what is the average rate
of extra evaporation caused, by the drug. Assume the evaporation mechanism to
be the only way by which heat is lost.  The mass of the child is 30 kg.  The specific
heat of human body is approximately the same as that of water, and latent heat of
evaporation of water at that temperature is about 580 cal g–1.

11.17 A ‘thermacole’ icebox is a cheap and an efficient method for storing small quantities
of cooked food in summer in particular. A cubical icebox of side 30 cm has a
thickness of 5.0 cm. If 4.0 kg of ice is put in the box, estimate the amount of ice
remaining after 6 h. The outside temperature is 45 °C, and co-efficient of thermal
conductivity of thermacole is 0.01 J s–1 m–1 K–1. [Heat of fusion of water = 335 × 103

J kg–1]

11.18 A brass boiler has a base area of 0.15 m2 and thickness 1.0 cm.  It boils water at the
rate of 6.0 kg/min when placed on a gas stove.  Estimate the temperature of the part
of the flame in contact with the boiler.  Thermal conductivity of brass = 109 J s–1 m–1

K–1 ;  Heat of vaporisation of water =  2256 × 103 J kg–1.

11.19 Explain why :
(a) a body with large reflectivity is a poor emitter
(b) a brass tumbler feels much colder than a wooden tray on a chilly day
(c) an optical pyrometer (for measuring high temperatures) calibrated for an ideal

black body radiation gives too low a value for the temperature of a red hot
iron piece in the open, but gives a correct value for the temperature when the
same piece is  in the furnace
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(d)  the earth without its atmosphere would be inhospitably cold
(e) heating systems based on circulation of  steam are more efficient in warming

a building than those based on circulation of hot water

11.20 A body cools from 80 °C to 50 °C in 5 minutes. Calculate the time it takes to cool
from 60 °C to 30 °C. The temperature of the surroundings is 20 °C.

ADDITIONAL EXERCISES

11.21 Answer the following questions based on the P-T phase diagram of carbon dioxide:

(a) At what temperature and pressure can the solid, liquid and vapour phases of
CO2  co-exist in equilibrium ?

(b) What is the effect of decrease of pressure on the fusion and boiling point of
CO2 ?

(c) What are the critical temperature and pressure for CO2 ? What is their
significance ?

(d) Is CO2 solid, liquid or gas at (a) –70 °C under 1 atm, (b) –60 °C under 10 atm,
(c) 15 °C under 56 atm ?

11.22 Answer the following questions based on the P – T phase diagram of CO2:
(a) CO2 at 1 atm pressure and temperature – 60 °C is compressed isothermally.

Does it go through a liquid phase ?

(b) What happens when CO2 at 4 atm pressure is cooled from room temperature
at constant pressure ?

(c) Describe qualitatively the changes in a given mass of solid CO2  at 10 atm
pressure and temperature –65 °C as it is heated up to room temperature at
constant pressure.

(d) CO2 is heated to a temperature 70 °C and compressed isothermally. What
changes in its properties do you expect to observe ?
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CHAPTER TWELVE

THERMODYNAMICS

12.1  INTRODUCTION

In previous chapter we have studied thermal properties of
matter. In this chapter we shall study laws that govern
thermal energy. We shall study the processes where work is
converted into heat and vice versa. In winter, when we rub
our palms together, we feel warmer; here work done in rubbing
produces the  ‘heat’.  Conversely, in a steam engine, the ‘heat’
of the steam is used to do useful work in moving the pistons,
which in turn rotate the wheels of the train.

In physics, we need to define the notions of heat,
temperature, work, etc. more carefully.  Historically, it took a
long time to arrive at the proper concept of ‘heat’. Before the
modern picture, heat was regarded as a fine invisible fluid
filling in the pores of a substance.  On contact between a hot
body and a cold body, the fluid  (called caloric) flowed from
the colder to the hotter body ! This is similar to what happens
when a horizontal pipe connects two tanks containing water
up to different heights. The flow continues until the levels of
water in the two tanks are the same.  Likewise, in the ‘caloric’
picture of heat, heat flows until the ‘caloric levels’ (i.e., the
temperatures) equalise.

In time, the picture of heat as a fluid was discarded in
favour of the modern concept of heat as a form of energy. An
important experiment in this connection was due to Benjamin
Thomson (also known as Count Rumford) in 1798. He
observed that boring of a brass cannon generated a lot of
heat, indeed enough to boil water. More significantly, the
amount of heat produced depended on the work done (by the
horses employed for turning the drill) but not on the
sharpness of the drill. In the caloric picture, a sharper drill
would scoop out more heat fluid from the pores; but this
was not observed. A most natural explanation of the
observations was that heat was a form of energy and the
experiment demonstrated conversion of energy from one form
to another–from work to heat.

12.1 Introduction

12.2 Thermal equilibrium

12.3 Zeroth law of

Thermodynamics

12.4 Heat, internal energy and

work

12.5 First law of

thermodynamics

12.6 Specific heat capacity

12.7 Thermodynamic state

variables and equation of
state

12.8 Thermodynamic processes

12.9 Heat engines

12.10 Refrigerators and heat

pumps

12.11 Second law of

thermodynamics

12.12 Reversible and irreversible

processes

12.13 Carnot engine

Summary

Points to ponder

Exercises
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Thermodynamics is the branch of physics that
deals with the concepts of heat and temperature
and the inter-conversion of heat and other forms
of energy. Thermodynamics is a macroscopic
science. It deals with bulk systems and does not
go into the molecular constitution of matter. In
fact, its concepts and laws were formulated in the
nineteenth century before the molecular picture
of matter was firmly established.  Thermodynamic
description involves relatively few macroscopic
variables of the system, which are suggested by
common sense and can be usually measured
directly. A microscopic description of a gas, for
example, would involve specifying the co-ordinates
and velocities of the huge number of molecules
constituting the gas. The description in kinetic
theory of gases is not so detailed but it does involve
molecular distribution of velocities.
Thermodynamic description of a gas, on the other
hand, avoids the molecular description altogether.
Instead, the state of a gas in thermodynamics is
specified by macroscopic variables such as
pressure, volume, temperature, mass and
composition that  are felt by our sense perceptions

and are measurable*.
The distinction between mechanics and

thermodynamics is worth bearing in mind.  In
mechanics, our interest is in the motion of particles
or bodies under the action of forces and torques.
Thermodynamics is not concerned with the
motion of the system as a whole.  It is concerned
with the internal macroscopic state of the body.
When a bullet is fired from a gun, what changes
is the mechanical state of the bullet (its kinetic
energy, in particular), not its temperature.  When
the bullet pierces a wood and stops, the kinetic
energy of the bullet gets converted into heat,
changing the temperature of the bullet and the
surrounding layers of wood.  Temperature is
related to the energy of the internal (disordered)
motion of the bullet, not to the motion of the bullet
as a whole.

12.2  THERMAL EQUILIBRIUM

Equilibrium in mechanics means that the net
external force and torque on a system are zero.
The term ‘equilibrium’ in thermodynamics appears

in a different context : we say the state of a system

is an equilibrium state if the macroscopic

variables that characterise the system do not
change in time. For example, a gas inside a closed

rigid container, completely insulated from its

surroundings, with fixed values of pressure,

volume, temperature, mass and composition that

do not change with time, is in a state of

thermodynamic equilibrium.

Fig. 12.1 (a) Systems A and B (two gases) separated

by an adiabatic wall – an insulating wall

that does not allow flow of heat. (b) The

same systems A and B separated by a

diathermic wall – a conducting wall that

allows heat to flow from one to another.  In

this case, thermal equilibrium is attained

in due course.

In general, whether or not a system is in a state
of equilibrium depends on the surroundings and
the nature of the wall that separates the system
from the surroundings.  Consider two gases A and
B occupying two different containers. We know
experimentally that pressure and volume of a
given mass of gas can be chosen to be its two
independent variables. Let the pressure and
volume of the gases be (P

A
, V

A
) and (P

B
, V

B
)

respectively.  Suppose first that the two systems
are put in proximity but are separated by an

(a)

(b)

* Thermodynamics may also involve other variables that are not so obvious to our senses  e.g. entropy, enthalpy,

etc., and they are all macroscopic variables. However, a thermodynamic state is specified by five state

variables viz., pressure, volume, temperature, internal energy and entropy. Entropy is a measure of disorderness

in the system. Enthalpy is a measure of total heat content of the system.
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adiabatic wall – an insulating wall (can be
movable) that does not allow flow of energy (heat)
from one to another. The systems are insulated
from the rest of the surroundings also by similar
adiabatic walls. The situation is shown
schematically in Fig. 12.1 (a). In this case, it is
found that any possible pair of values (P

A
, V

A
) will

be in equilibrium with any possible pair of values
(P

B
, V

B
).  Next, suppose that the adiabatic wall is

replaced by a diathermic wall – a conducting wall
that allows energy flow (heat) from one to another.
It is then found that the macroscopic variables of
the systems A and B change spontaneously until
both the systems attain equilibrium states. After
that there is no change in their states. The
situation is shown in Fig. 12.1(b).  The pressure
and volume variables of the two gases change to
(P

B
′, V

B
′) and (P

A
′, V

A
′) such that the new states

of A and B are in equilibrium with each other*.
There is no more energy flow from one to another.
We then say that the system A is in thermal
equilibrium with the system B.

What characterises the situation of thermal
equilibrium between two systems ? You can guess

the answer from your experience. In thermal

equilibrium, the temperatures of the two systems
are equal. We shall see how does one arrive at the
concept of temperature in thermodynamics? The
Zeroth law of thermodynamics provides the clue.

12.3  ZEROTH LAW OF THERMODYNAMICS

Imagine two systems A and B, separated by an

adiabatic wall, while each is in contact with a third

system C, via a conducting wall [Fig. 12.2(a)]. The

states of the systems (i.e., their macroscopic

variables) will change until both A and B come to

thermal equilibrium with C. After this is achieved,

suppose that the adiabatic wall between A and B

is replaced by a conducting wall and C is insulated

from A and B by an adiabatic wall [Fig.12.2(b)]. It

is found that the states of A and B change no

further i.e. they are found to be in thermal

equilibrium with each other. This observation

forms the basis of the Zeroth Law of

Thermodynamics, which states that ‘two

systems in thermal equilibrium with a third

system separately are in thermal equilibrium

with each other’.  R.H. Fowler formulated this

law in 1931 long after the first and second Laws

of thermodynamics were stated and so numbered.

The Zeroth Law clearly suggests that when two
systems A and B, are in thermal equilibrium,
there must be a physical quantity that has the
same value for both. This thermodynamic
variable whose value is equal for two systems in
thermal equilibrium is called temperature (T ).
Thus, if A and B are separately in equilibrium
with C, TA = TC  and TB = TC.  This implies that
TA = TB i.e. the systems A and B are also in
thermal equilibrium.

We have arrived at the concept of temperature
formally via the Zeroth Law.  The next question
is : how to assign numerical values to
temperatures of different bodies ?  In other words,
how do we construct a scale of temperature ?
Thermometry deals with this basic question to
which we turn in the next section.

Fig. 12.2 (a) Systems A and B are separated by an

adiabatic wall, while each is in contact

with a third system C via a conducting

wall. (b) The adiabatic wall between  A

and B is replaced by a conducting wall,

while C is insulated from A and B by an

adiabatic wall.

* Both the variables need not change. It depends on the constraints. For instance, if the gases are in containers

of fixed volume, only the pressures of the gases would change to achieve thermal equilibrium.

(a)

(b)
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12.4  HEAT, INTERNAL ENERGY AND WORK

The Zeroth Law of Thermodynamics led us to
the concept of temperature that agrees with our

commonsense notion.  Temperature is a marker
of the ‘hotness’ of a body. It determines the

direction of flow of heat when two bodies are
placed in thermal contact.  Heat flows from the
body at a higher temperature to the one at lower

temperature. The flow stops when the
temperatures equalise; the two bodies are then

in thermal equilibrium. We saw in some detail
how to construct temperature scales to assign
temperatures to different bodies. We now

describe the concepts of heat and other relevant
quantities like internal energy and work.

The concept of internal energy of a system is
not difficult to understand.  We know that every
bulk system consists of a large number of

molecules.  Internal energy is simply the sum of
the kinetic energies and potential energies of

these molecules. We remarked earlier that in
thermodynamics, the kinetic energy of the
system, as a whole, is not relevant.  Internal

energy is thus, the sum of molecular kinetic and
potential energies in the frame of reference

relative to which the centre of mass of the system
is at rest. Thus, it includes only the (disordered)

energy associated with the random motion of
molecules of the system. We denote the internal
energy of a system by U.

Though we have invoked the molecular
picture to understand the meaning of internal
energy, as far as thermodynamics is concerned,

U is simply a macroscopic variable of the system.
The important thing about internal energy is

that it depends only on the state of the system,
not on how that state was achieved.  Internal

energy U of a system is an example of a
thermodynamic ‘state variable’ – its value
depends only on the given state of the system,

not on history i.e. not on the ‘path’ taken to arrive
at that state. Thus, the internal energy of a given

mass of gas depends on its state described by
specific values of pressure, volume and
temperature. It does not depend on how this

state of the gas came about. Pressure, volume,
temperature, and internal energy are

thermodynamic state variables of the system
(gas) (see section 12.7). If we neglect the small

intermolecular forces in a gas, the internal
energy of a gas is just the sum of kinetic energies

associated with various random motions of its
molecules.  We will see in the next chapter that
in a gas this motion is not only translational

(i.e. motion from one point to another in the
volume of the container); it also includes
rotational and vibrational motion of the
molecules (Fig. 12.3).

Fig. 12.3 (a) Internal energy U of a gas is the sum

of the kinetic and potential energies of  its

molecules when the box is at rest. Kinetic

energy due to various types of motion

(translational, rotational, vibrational) is to

be included in U.  (b) If the same box is

moving as a whole with some velocity,

the kinetic energy of the box is not to be

included in U.

Fig. 12.4 Heat and work are two distinct modes of

energy transfer to a system that results  in

change in its internal energy. (a) Heat is

energy transfer due to temperature

difference between the system and the

surroundings.  (b) Work is energy transfer

brought about by means (e.g. moving the

piston by raising or lowering some weight

connected to it) that do not involve such a

temperature difference.
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What are the ways of changing internal
energy of a system ? Consider again, for
simplicity, the system to be a certain mass of
gas contained in a cylinder with a movable
piston as shown in Fig. 12.4.  Experience shows
there are two ways of changing the state of the
gas (and hence its internal energy).  One way is
to put the cylinder in contact with a body at a
higher temperature than that of the gas. The
temperature difference will cause a flow of
energy (heat) from the hotter body to the gas,
thus increasing the internal energy of the gas.
The other way is to push the piston down i.e. to
do work on the system, which again results in
increasing the internal energy of the gas.  Of
course, both these things could happen in the

reverse direction. With surroundings at a lower
temperature, heat would flow from the gas to
the surroundings.  Likewise, the gas could push

the piston up and do work on the surroundings.
In short, heat and work are two different modes
of altering the state of a thermodynamic system
and changing its internal energy.

The notion of heat should be carefully
distinguished from the notion of internal energy.
Heat is certainly energy, but it is the energy in
transit.  This is not just a play of words.  The
distinction is of basic significance. The state of
a thermodynamic system is characterised by its
internal energy, not heat. A statement like ‘a
gas in a given state has a certain amount of
heat’ is as meaningless as the statement that
‘a gas in a given state has a certain amount
of work’.  In contrast, ‘a gas in a given state
has a certain amount of internal energy’ is a
perfectly meaningful statement. Similarly, the
statements ‘a certain amount of heat is
supplied to the system’ or ‘a certain amount
of work was done by the system’ are perfectly
meaningful.

To summarise, heat and work in
thermodynamics are not state variables. They
are modes of energy transfer to a system

resulting in change in its internal energy,
which, as already mentioned, is a state variable.

In ordinary language, we often confuse heat

with internal energy.  The distinction between
them is sometimes ignored in elementary

physics books. For proper understanding of
thermodynamics, however, the distinction is
crucial.

12.5  FIRST LAW OF THERMODYNAMICS

We have seen that the internal energy U of a
system can change through two modes of energy
transfer : heat and work.  Let

∆Q = Heat supplied to the system by the
surroundings

∆W = Work done by the system on the
surroundings

∆U = Change in internal energy of the system
The general principle of conservation of

energy then implies that

∆Q =  ∆U + ∆W (12.1)

i.e. the energy (∆Q) supplied to the system goes
in partly to increase the internal energy of the
system (∆U) and the rest in work on the
environment (∆W). Equation (12.1) is known as
the First Law of Thermodynamics.  It is simply
the general law of conservation of energy applied
to any system in which the energy transfer from
or to the surroundings is taken into account.

Let us put Eq. (12.1) in the alternative form

∆Q  – ∆W  = ∆U (12.2)

Now, the system may go from an initial state
to the final state in a number of ways. For
example, to change the state of a gas from
(P

1
, V

1
) to (P

2
, V

2
), we can first change the

volume of the gas from V
1
 to V

2
, keeping its

pressure constant i.e. we can first go the state
(P

1
, V

2
) and then change the pressure of the

gas from P
1
 to P

2
, keeping volume constant, to

take the gas to (P
2
, V

2
).  Alternatively, we can

first keep the volume constant and then keep
the pressure constant. Since U is a state
variable, ∆U depends only on the initial and
final states and not on the path taken by the
gas to go from one to the other. However, ∆Q
and ∆W will, in general, depend on the path
taken to go from the initial to final states. From
the First Law of Thermodynamics, Eq. (12.2),
it is clear that the combination ∆Q – ∆W, is
however, path independent. This shows that
if a system is taken through a process in which
∆U = 0 (for example, isothermal expansion of
an ideal gas, see section 12.8),

∆Q  = ∆W

i.e., heat supplied to the system is used up
entirely by the system in doing work on the
environment.
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If the system is a gas in a cylinder with a
movable piston, the gas in moving the piston does
work. Since force is pressure times area, and
area times displacement is volume, work done
by the system against a constant pressure P is

∆W  = P ∆V

where ∆V is the change in volume of the gas.
Thus, for this case, Eq. (12.1) gives

∆Q  = ∆U + P ∆V (12.3)

As an application of Eq. (12.3), consider the

change in internal energy for 1 g of water when

we go from its liquid to vapour phase. The

measured latent heat of water is 2256 J/g. i.e.,

for 1 g of water ∆Q = 2256 J. At atmospheric

pressure, 1 g of water has a volume 1 cm3 in
liquid phase and 1671 cm3 in vapour phase.

Therefore,

∆W =P (V
g
 –V

l 
) = 1.013 ×105 ×(1671×10–6) =169.2 J

Equation (12.3) then gives

∆U = 2256 – 169.2  =  2086.8 J

We see that most of the heat goes to increase
the internal energy of water in transition from
the liquid to the vapour phase.

12.6  SPECIFIC HEAT CAPACITY

Suppose an amount of heat ∆Q supplied to a
substance changes its temperature from T to
T + ∆T.  We define heat capacity of a substance
(see Chapter 11) to be

T

Q
S

∆

∆
=  (12.4)

We expect ∆Q and, therefore, heat capacity S
to be proportional to the mass of the substance.
Further, it could also depend on the
temperature, i.e., a different amount of heat may
be needed for a unit rise in temperature at
different temperatures. To define a constant
characteristic of the substance and
independent of its amount, we divide S by the
mass of the substance m  in kg :

s
S

m m

Q

T
    = =







1 ∆

∆
(12.5)

s is known as the specific heat capacity of the
substance. It depends on the nature of the
substance and its temperature. The unit of
specific heat capacity is J kg–1 K–1.

If the amount of substance is specified in
terms of moles µ (instead of mass m in kg ), we
can define heat capacity per mole of the
substance by

1S Q
C

Tµ µ

∆
= =

∆
(12.6)

C is known as molar specific heat capacity of
the substance. Like s, C is independent of the
amount of substance. C depends on the nature
of the substance, its temperature and the
conditions under which heat is supplied. The
unit of C is J mo1–1 K–1. As we shall see later (in
connection with specific heat capacity of gases),
additional conditions may be needed to define
C or s. The idea in defining C is that simple
predictions can be made in regard to molar
specific heat capacities.

Table 12.1 lists measured specific and molar
heat capacities of solids at atmospheric pressure
and ordinary room temperature.

We will see in Chapter 13 that predictions of
specific heats of gases generally agree with
experiment. We can use the same law of
equipartition of energy that we use there to
predict molar specific heat capacities of solids
(See Section 13.5 and 13.6).  Consider a solid of
N atoms, each vibrating about its mean
position. An oscillator in one dimension has
average energy of 2 × ½ k

B
T = k

B
T. In three

dimensions, the average energy is 3 k
B
T.

For a mole of a solid, the total energy is

U  = 3 k
B
T  × N

A
  = 3 RT  (∵k

B
T  × N

A
 = R )

Now, at constant pressure, ∆Q = ∆U + P ∆V ≅
∆U,  since for a solid ∆V is negligible.  Therefore,

C
Q

T

U

T
R= = =

∆

∆

∆

∆
3 (12.7)

Table 12.1 Specific and molar heat capacities
of some solids at room
temperature and atmospheric

pressure

   As Table 12.1 shows, the experimentally

measured values which generally agrees with

Substance Speci"c heat
–v

(J kg K )
–1 –1

Molar speci"c
heat (J mol K )

–1 –1
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predicted value 3R at ordinary temperatures.
(Carbon is an exception.) The agreement is
known to break down at low temperatures.

Specific heat capacity of water

The old unit of heat was calorie.  One calorie
was earlier defined to be the amount of heat
required to raise the temperature of 1g of water
by 1°C. With more precise measurements, it was
found that the specific heat of water varies
slightly with temperature.  Figure 12.5 shows
this variation in the temperature range 0 to
100 °C.

Fig. 12.5 Variation of specific heat capacity of water

with temperature.

For a precise definition of calorie, it was,

therefore, necessary to specify the unit

temperature interval. One calorie is defined

to be the amount of heat required to raise the

temperature of 1g of water from 14.5 °C to

15.5 °C. Since heat is just a form of energy,

it is preferable to use the unit joule, J.

In SI units, the specific heat capacity of water

is 4186 J kg–1 K–1 i.e. 4.186 J g–1 K–1. The so

called mechanical equivalent of heat defined

as the amount of work needed to produce

1 cal of heat is in fact just a conversion factor

between two different units of energy : calorie

to joule. Since in SI units, we use the unit joule

for heat, work or any other form of energy, the

term mechanical equivalent is now

superfluous and need not be used.

As already remarked, the specific heat

capacity depends on the process or the

conditions under which heat capacity transfer

takes place.  For gases, for example, we can

define two specific heats : specific heat

capacity at constant volume and specific
heat capacity at constant pressure.  For an

ideal gas, we have a simple relation.

        C
p
  –  C

v
 = R (12.8)

where C
p
 and C

v
  are molar specific heat

capacities of an ideal gas at constant pressure

and volume respectively and R is the universal

gas constant.  To prove the relation, we begin

with Eq. (12.3) for 1 mole of the gas :

                ∆Q  = ∆U + P ∆V

If ∆Q  is absorbed at constant volume, ∆V = 0

   C
Q

T

U

T

U

T
v

v v

=






=






=






∆

∆

∆

∆

∆

∆ (12.9)

where the subscript v is dropped in the last
step, since U of an ideal gas depends only on
temperature. (The subscript denotes the
quantity kept fixed.) If, on the other hand, ∆Q

is absorbed at constant pressure,

C
Q

T

U

T
 P

V

T
p

p p p

   =






=







+







∆

∆

∆

∆

∆

∆ (12.10)

The subscript p can be dropped from the
first term since U of an ideal gas depends only
on T.  Now, for a mole of an ideal gas

                PV = RT

which gives

    P
V

T
R  

p

∆

∆







= (12.11)

Equations (12.9) to (12.11) give the desired
relation, Eq. (12.8).

12.7 THERMODYNAMIC STATE VARIABLES
AND EQUATION OF STATE

Every equilibrium state of a thermodynamic

system is completely described by specific

values of some macroscopic variables, also

called state variables. For example, an

equilibrium state of a gas is completely

specified by the values of pressure, volume,
temperature, and mass (and composition if

there is a mixture of gases). A thermodynamic

system is not always in equilibrium. For example,

a gas allowed to expand freely  against vacuum

is not an equilibrium state [Fig. 12.6(a)]. During

the rapid expansion, pressure of the gas may

2020-21



PHYSICS310

not be uniform throughout. Similarly, a mixture

of gases undergoing an explosive chemical

reaction (e.g. a mixture of petrol vapour and

air when ignited by a spark) is not an

equilibrium state; again its temperature and

pressure are not uniform [Fig. 12.6(b)].

Eventually, the gas attains a uniform

temperature and pressure and comes to

thermal and mechanical equilibrium with its

surroundings.

Fig. 12.6 (a) The partition in the box is suddenly

removed leading to free expansion of the

gas. (b) A mixture of gases undergoing an

explosive chemical reaction. In both

situations, the gas is not in equilibrium and

cannot be described by state variables.

In short, thermodynamic state variables
describe equilibrium states of systems. The
various state variables are not necessarily
independent. The connection between the state
variables is called the equation of state. For
example, for an ideal gas, the equation of state
is the ideal gas relation

   P V = µ R T

For a fixed amount of the gas i.e. given µ, there
are thus, only two independent variables, say P
and V or T and V.  The pressure-volume curve
for a fixed temperature is called an isotherm.
Real gases may have more complicated
equations of state.

The thermodynamic state variables are of two
kinds: extensive and intensive. Extensive
variables indicate the ‘size’ of the system.
Intensive variables such as pressure and

temperature do not. To decide which variable is
extensive and which intensive, think of a
relevant system in equilibrium, and imagine that
it is divided into two equal parts. The variables
that remain unchanged for each part are
intensive. The variables whose values get halved
in each part are extensive. It is easily seen, for
example, that internal energy U, volume V, total
mass M are extensive variables. Pressure P,
temperature T, and density ρ are intensive
variables.  It is a good practice to check the
consistency of thermodynamic equations using
this classification of variables. For example, in
the equation

      ∆Q = ∆U + P ∆V

quantities on both sides are extensive*. (The

product of an intensive variable like P and an
extensive quantity ∆V is extensive.)

12.8  THERMODYNAMIC PROCESSES

12.8.1  Quasi-static process

Consider a gas in thermal and mechanical
equilibrium with its surroundings. The pressure
of the gas in that case equals the external
pressure and its temperature is the same as
that of its surroundings. Suppose that the
external pressure is suddenly reduced (say by
lifting the weight on the movable piston in the
container).  The piston will accelerate outward.
During the process, the gas passes through
states that are not equilibrium states. The non-
equilibrium states do not have well-defined
pressure and temperature. In the same way, if
a finite temperature difference exists between
the gas and its surroundings, there will be a
rapid exchange of heat during which the gas
will pass through non-equilibrium states.  In
due course, the gas will settle to an equilibrium
state with well-defined temperature and
pressure equal to those of the surroundings. The
free expansion of a gas in vacuum and a mixture
of gases undergoing an explosive chemical
reaction, mentioned in section 12.7 are also
examples where the system goes through non-
equilibrium states.

Non-equilibrium states of a system are difficult
to deal with.  It is, therefore, convenient to
imagine an idealised process in which at every
stage the system is an equilibrium state. Such a

* As emphasised earlier, Q is not a state variable.  However, ∆Q is clearly proportional to the total mass of

system and hence is extensive.
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process is, in principle, infinitely slow, hence the
name quasi-static (meaning nearly static). The
system changes its variables (P, T, V ) so slowly

that it remains in thermal and mechanical
equilibrium with its surroundings throughout.

In a quasi-static process, at every stage, the
difference in the pressure of the system and the
external pressure is infinitesimally small.  The

same is true of the temperature difference
between the system and its surroundings

(Fig.12.7).  To take a gas from the state (P, T ) to
another state (P ′, T ′ ) via  a quasi-static process,

we change the external pressure by a very small
amount, allow the system to equalise its pressure
with that of the surroundings and continue the

process infinitely slowly until the system
achieves the pressure P ′. Similarly, to change

the temperature, we introduce an infinitesimal
temperature difference between the system and
the surrounding reservoirs and by choosing

reservoirs of progressively different temperatures
T to T ′, the system achieves the temperature T ′.

Fig. 12.7 In a quasi-static process, the temperature

of the surrounding reservoir and the

external pressure differ only infinitesimally

from the temperature and pressure of the

system.

A quasi-static process is obviously a

hypothetical construct.  In practice, processes

that are sufficiently slow and do not involve

accelerated motion of the piston, large

temperature gradient, etc., are reasonably

approximation to an ideal quasi-static process.

We shall from now on deal with quasi-static

processes only, except when stated otherwise.

A process in which the temperature of the
system is kept fixed throughout is called an
isothermal process.  The expansion of a gas in
a metallic cylinder placed in a large reservoir of
fixed temperature is an example of an isothermal
process.  (Heat transferred from the reservoir to
the system does not materially affect the
temperature of the reservoir, because of its very
large heat capacity.)  In isobaric processes the
pressure is constant while in isochoric
processes the volume is constant.  Finally, if
the system is insulated from the surroundings
and no heat flows between the system and the
surroundings, the process is adiabatic. The
definitions of these special processes are
summarised in Table. 12.2

Table 12.2 Some special thermodynamic
processes

We now consider these processes in some detail :

12.8.2 Isothermal process

For an isothermal process (T fixed), the ideal gas
equation gives

                  PV  =  constant

i.e., pressure of a given mass of gas varies inversely
as its volume. This is nothing but Boyle’s Law.

Suppose an ideal gas goes isothermally (at
temperature T ) from its initial state (P

1
, V

1
) to

the final state (P
2
, V 

2
).  At any intermediate stage

with pressure P and volume change from V to
V + ∆V (∆V small)

     ∆W  = P ∆ V

Taking (∆V → 0) and summing the quantity
∆W over the entire process,

W = P V

V

V

1

2

 d∫

=  RT

V

V

RT    
V

V

V

V
1

2
2

1

µ µ
d

∫ =    In (12.12)
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where in the second  step we have made use of
the ideal gas equation PV = µ RT and  taken the
constants out of the integral.  For an ideal gas,
internal energy depends only on temperature.
Thus, there is no change in the internal energy
of an ideal gas in an isothermal process. The
First Law of Thermodynamics then implies that
heat supplied to the gas equals the work done
by the gas : Q = W.  Note from Eq. (12.12) that
for V

2
 > V

1
,  W > 0; and for V

2
 < V

1
, W < 0.  That

is, in an isothermal expansion, the gas absorbs
heat and does work while in an isothermal
compression, work is  done on the gas by the
environment and heat is released.

12.8.3 Adiabatic process

In an adiabatic process, the system is insulated
from the surroundings and heat absorbed or
released is zero. From Eq. (12.1), we see that
work done by the gas results in decrease in its
internal energy (and hence its temperature for
an ideal gas).  We quote without proof (the result
that you will learn in higher courses) that for
an adiabatic process of an ideal gas.

    P V γ   =  const (12.13)

where γ  is the ratio of specific heats (ordinary
or molar) at constant pressure and at constant
volume.

               γ =
C

p

C
v

Thus if an ideal gas undergoes a change in
its state adiabatically from (P

1
, V

1
) to (P

2
, V

2
) :

P1 V1

γ  = P2 V2

γ
(12.14)

Figure12.8 shows the P-V curves of an ideal
gas for two adiabatic processes connecting two
isotherms.

Fig. 12.8 P-V curves for isothermal and adiabatic

processes of an ideal gas.

We can calculate, as before, the work done in
an adiabatic change of an ideal gas from the
state (P

1
, V

1
, T

1
) to the state (P

2
, V

2
, T

2
).

         W = P V

V

V

  d

1

2

∫

(12.15)

From Eq. (12.14), the constant is P
1
V

1
γ  or P

2
V

2
γ

W = 
P V

V

P V

V
 2 2

2

1 1

1

1

1  −
− −

−










γ

γ

γ

γ

γ1 1

 = P V P V
R(T T1

1  −
−

−

−
[ ] =

γ

µ

γ
2 2 1 1

1 2 )

1
(12.16)

As expected, if work is done by the gas in an

adiabatic process (W > 0), from Eq. (12.16),

T
2
 < T

1
.  On the other hand, if work is done on

the gas (W < 0), we get T
2
 > T

1
 i.e., the

temperature of the gas rises.

12.8.4 Isochoric process

In an isochoric process, V is constant. No work
is done on or by the gas.  From Eq. (12.1), the
heat absorbed by the gas goes entirely to change
its internal energy and its temperature.  The
change in temperature for a given amount of
heat is determined by the specific heat of the
gas at constant volume.

12.8.5 Isobaric process

In an isobaric process, P is fixed. Work done by
the gas is

W = P (V
2
 – V

1
)  =  µ R (T

2
 – T

1
)    (12.17)

Since temperature changes, so does internal

energy. The heat absorbed goes partly to
increase internal energy and partly to do work.

The change in temperature for a given amount
of heat is determined by the specific heat of the
gas at constant pressure.

12.8.6 Cyclic process

In a cyclic process, the system returns to its
initial state. Since internal energy is a state
variable, ∆U = 0 for a cyclic process. From
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Eq. (12.1), the total heat absorbed equals the
work done by the system.

12.9  HEAT ENGINES

Heat engine is a device by which a system is
made to undergo a cyclic process that results
in conversion of heat to work.
(1) It consists of a working substance–the

system. For example, a mixture of fuel
vapour and air in a gasoline or diesel engine
or steam in a steam engine are the working
substances.

(2) The working substance goes through a cycle
consisting of several processes. In some of
these processes, it absorbs a total amount
of heat Q

1
 from an external reservoir at some

high temperature T
1
.

(3) In some other processes of the cycle, the
working substance releases a total amount
of heat Q

2
 to an external reservoir at some

lower temperature T
2
.

(4) The work done (W ) by the system in a cycle
is transferred to the environment via some
arrangement (e.g. the working substance
may be in a cylinder with a moving piston
that transfers mechanical energy to the
wheels of a vehicle via a shaft).

The basic features of a heat engine are
schematically represented in Fig. 12.9.

Fig. 12.9 Schematic representation of a heat engine.

The engine takes heat Q
1
 from a hot

reservoir at temperature T
1
, releases heat

Q
2
 to a cold reservoir at temperature T

2

and delivers work W to the surroundings.

The cycle is repeated again and again to get
useful work for some purpose. The discipline of
thermodynamics has its roots in the study of heat
engines. A basic question relates to the efficiency
of a heat engine. The efficiency (η) of a heat
engine is defined by

1Q

W
 = η (12.18)

where Q
1
 is the heat input i.e., the heat

absorbed by the system in one complete cycle

and W is the work done on the environment in
a cycle. In a cycle, a certain amount of heat (Q

2
)

may also be rejected to the environment. Then,
according to the First Law of Thermodynamics,
over one complete cycle,

W  =  Q
1
 – Q

2
(12.19)

i.e.,

1Q
2Q

 −  = 1η (12.20)

For Q
2
 = 0, η = 1, i.e., the engine will have

100% efficiency in converting heat into work.
Note that the First Law of Thermodynamics i.e.,
the energy conservation law does not rule out
such an engine. But experience shows that
such an ideal engine with η = 1 is never possible,
even if we can eliminate various kinds of losses
associated with actual heat engines. It turns
out that there is a fundamental limit on the
efficiency of a heat engine set by an independent
principle of nature, called the Second Law of
Thermodynamics (section 12.11).

The mechanism of conversion of heat into
work varies for different heat engines.  Basically,
there are two ways : the system (say a gas or a
mixture of gases) is heated by an external
furnace, as in a steam engine; or it is heated
internally by an exothermic chemical reaction
as in an internal combustion engine. The
various steps involved in a cycle also differ from
one engine to another.

12.10  REFRIGERATORS AND HEAT PUMPS

A refrigerator is the reverse of a heat engine.
Here the working substance extracts heat Q

2

from the cold reservoir at temperature T
2
, some

external work W is done on it and heat Q
1
 is

released to the hot reservoir at temperature T
1

(Fig. 12.10).

Fig. 12.10 Schematic representation of a refrigerator

or a heat pump, the reverse of a heat

engine.
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A heat pump is the same as a refrigerator.

What term we use depends on the purpose of

the device.  If the purpose is to cool a portion of

space, like the inside of a chamber, and higher

temperature reservoir is surrounding, we call

the device a refrigerator; if the idea is to pump

heat into a portion of space (the room in a

building when the outside environment is cold),

the device is called a heat pump.

In a refrigerator the working substance

(usually, in gaseous form) goes through the

following steps : (a) sudden expansion of the gas

from high to low pressure which cools it and

converts it into a vapour-liquid mixture, (b)

absorption by the cold fluid of heat from the

region to be cooled converting it into vapour, (c)

heating up of the vapour due to external work

done on the system, and (d) release of heat by

the vapour to the surroundings, bringing it to

the initial state and completing the cycle.

The coefficient of performance (α) of a

refrigerator is given by

2Q

W
α =  (12.21)

where Q
2
 is the heat extracted from the cold

reservoir and W is the work done on the
system–the refrigerant. (α for heat pump is
defined as Q

1
/W) Note that while η by definition

can never exceed 1, α can be greater than 1.
By energy conservation, the heat released to the
hot reservoir is

Q
1
  = W +  Q

2

i.e.,
2

1 2–

Q

Q Q
α  = 

  (12.22)

In a heat engine, heat cannot be fully
converted to work; likewise a refrigerator cannot
work without some external work done on the
system, i.e., the coefficient of performance in Eq.
(12.21) cannot be infinite.

12.11  SECOND LAW OF THERMODYNAMICS

The First Law of Thermodynamics is the principle

of conservation of energy.  Common experience

shows that there are many conceivable
processes that are perfectly allowed by the First

Law and yet are never observed.  For example,

nobody has ever seen a book lying on a table

jumping to a height by itself.  But such a thing

Pioneers of Thermodynamics

Lord Kelvin (William Thomson)  (1824-1907), born in Belfast, Ireland, is

among the foremost British scientists of the nineteenth century.  Thomson

played a key role in the development of the law of conservation of energy

suggested by the work of James Joule (1818-1889), Julius Mayer (1814-

1878) and Hermann Helmholtz (1821-1894). He collaborated with Joule

on the so-called Joule-Thomson effect : cooling of a gas when it expands

into vacuum.  He introduced the notion of the absolute zero of temperature

and proposed the absolute temperature scale, now called the Kelvin scale

in his honour.  From the work of Sadi Carnot (1796-1832), Thomson arrived

at a form of the Second Law of Thermodynamics.  Thomson was a versatile

physicist, with notable contributions to electromagnetic theory and

hydrodynamics.

Rudolf Clausius (1822-1888), born in Poland, is generally regarded as

the discoverer of the Second Law of Thermodynamics.  Based on the work

of Carnot and Thomson, Clausius arrived at the important notion of entropy

that led him to a fundamental version of the Second Law of

Thermodynamics that states that the entropy of an isolated system can

never decrease. Clausius also worked on the kinetic theory of gases and

obtained the first reliable estimates of molecular size, speed, mean free

path, etc.
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would be possible if the principle of conservation

of energy were the only restriction. The table

could cool spontaneously, converting some of its
internal energy into an equal amount of

mechanical energy of the book, which would

then hop to a height with potential energy equal

to the mechanical energy it acquired.  But this

never happens. Clearly, some additional basic

principle of nature forbids the above, even
though it satisfies the energy conservation

principle.  This principle, which disallows many

phenomena consistent with the First Law of
Thermodynamics is known as the Second Law
of Thermodynamics.

The Second Law of Thermodynamics gives a
fundamental limitation to the efficiency of a heat
engine and the co-efficient of performance of a
refrigerator. In simple terms, it says that
efficiency of a heat engine can never be unity.
According to Eq. (12.20), this implies that heat
released to the cold reservoir can never be made
zero. For a refrigerator, the Second Law says that
the co-efficient of performance can never be
infinite.  According to Eq. (12.21), this implies
that external work (W ) can never be zero. The
following two statements, one due to Kelvin and
Planck denying the possibility of a perfect heat
engine, and another due to Clausius denying
the possibility of a perfect refrigerator or heat
pump, are a concise summary of these
observations.

Kelvin-Planck statement

No process is possible whose sole result is the
absorption of heat from a reservoir and the
complete conversion of the heat into work.

Clausius statement

No process is possible whose sole result is the
transfer of heat from a colder object to a hotter
object.

It can be proved that the two statements
above are completely equivalent.

12.12  REVERSIBLE AND IRREVERSIBLE
PROCESSES

Imagine some process in which a thermodynamic
system goes from an initial state i to a final
state f. During the process the system absorbs
heat Q from the surroundings and performs
work W on it. Can we reverse this process and

bring both the system and surroundings to their

initial states with no other effect anywhere ?

Experience suggests that for most processes in

nature this is not possible. The spontaneous

processes of nature are irreversible. Several
examples can be cited. The base of a vessel on

an oven is hotter than its other parts. When

the vessel is removed, heat is transferred from

the base to the other parts, bringing the vessel

to a uniform temperature (which in due course

cools to the temperature of the surroundings).
The process cannot be reversed; a part of the

vessel will not get cooler spontaneously and

warm up the base. It will violate the Second Law

of Thermodynamics, if it did. The free expansion

of a gas is irreversible. The combustion reaction

of a mixture of petrol and air ignited by a spark
cannot be reversed. Cooking gas leaking from a

gas cylinder in the kitchen diffuses to the

entire room. The diffusion process will not

spontaneously reverse and bring the gas back

to the cylinder. The stirring of a liquid in thermal

contact with a reservoir will convert the work
done into heat, increasing the internal energy

of the reservoir. The process cannot be reversed

exactly; otherwise it would amount to conversion

of heat entirely into work, violating the Second

Law of Thermodynamics. Irreversibility is a rule

rather an exception in nature.
Irreversibility arises mainly from two causes:

one, many processes (like a free expansion, or

an explosive chemical reaction) take the system

to non-equilibrium states; two, most processes

involve friction, viscosity and other dissipative

effects (e.g., a moving body coming to a stop and
losing its mechanical energy as heat to the floor

and the body; a rotating blade in a liquid coming

to a stop due to viscosity and losing its

mechanical energy with corresponding gain in

the internal energy  of the liquid). Since

dissipative effects are present everywhere and
can be minimised but not fully eliminated, most

processes that we deal with are irreversible.

A thermodynamic process  (state i → state f )

is reversible if the process can be turned back

such that both the system and the surroundings

return to their original states, with no other

change anywhere else in the universe. From the

preceding discussion, a reversible process is an

idealised notion. A process is reversible only if

it is quasi-static (system in equilibrium with the

surroundings at every stage) and there are no

dissipative effects. For example, a quasi-static
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isothermal expansion of an ideal gas in a
cylinder fitted with a frictionless movable piston
is a reversible process.

Why is reversibility such a basic concept in
thermodynamics ?  As we have seen, one of the
concerns of thermodynamics is the efficiency
with which heat can be converted into work.
The Second Law of Thermodynamics rules out
the possibility of a perfect heat engine with 100%
efficiency. But what is the highest efficiency
possible for a heat engine working between two
reservoirs at temperatures T

1
 and T

2
? It turns

out that a heat engine based on idealised
reversible processes achieves the highest
efficiency possible. All other engines involving
irreversibility in any way (as would be the case
for practical engines) have lower than this
limiting efficiency.

12.13  CARNOT ENGINE

Suppose we have a hot reservoir at temperature

T
1
 and a cold reservoir at temperature T

2
.  What

is the maximum efficiency possible for a heat

engine operating between the two reservoirs and

what cycle of processes should be adopted to

achieve the maximum efficiency ?  Sadi Carnot,

a French engineer, first considered this question

in 1824. Interestingly, Carnot arrived at the

correct answer, even though the basic concepts

of heat and thermodynamics had yet to be firmly

established.

We expect the ideal engine operating between

two temperatures to be a reversible engine.

Irreversibility is associated with dissipative

effects, as remarked in the preceding section,

and lowers efficiency. A process is reversible if

it is quasi-static and non-dissipative.  We have

seen that a process is not quasi-static if it

involves finite temperature difference between

the system and the reservoir.  This implies that

in a reversible heat engine operating between
two temperatures, heat should be absorbed

(from the hot reservoir) isothermally and

released (to the cold reservoir) isothermally.  We

thus have identified two steps of the reversible

heat engine : isothermal process at temperature
T

1
 absorbing heat Q

1
 from the hot reservoir, and

another isothermal process at temperature T
2

releasing heat Q
2
 to the cold reservoir. To

complete a cycle, we need to take the system

from temperature T
1
 to T

2
 and then back from

temperature T
2
 to T

1
.  Which processes should

we employ for this purpose that are reversible?
A little reflection shows that we can only adopt
reversible adiabatic processes for these
purposes, which involve no heat flow from any
reservoir. If we employ any other process that is
not adiabatic, say an isochoric process, to take
the system from one temperature to another, we
shall need a series of reservoirs in the
temperature range T

2
 to T

1
 to ensure that at each

stage the process is quasi-static.  (Remember
again that for a process to be quasi-static and
reversible, there should be no finite temperature
difference between the system and the reservoir.)
But we are considering a reversible engine that
operates between only two temperatures. Thus
adiabatic processes must bring about the
temperature change in the system from T

1
 to T

2

and T
2
 to T

1
 in this engine.

Fig. 12.11 Carnot cycle for a heat engine with an

ideal gas as  the working substance.

A reversible heat engine operating between
two temperatures is called a Carnot engine.  We
have just argued that such an engine must have

the following sequence of steps constituting one

cycle, called the Carnot cycle, shown in Fig.

12.11. We have taken the working substance of

the Carnot engine to be an ideal gas.

(a) Step 1 → 2 Isothermal expansion of the gas
taking its  state from (P

1
, V

1
, T

1
)  to

(P
2
, V

2
, T

1
).

The heat absorbed by the gas (Q
1
) from the

reservoir at temperature T
1
 is given by
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Eq. (12.12). This is also the work done (W
1 → 2

)
by the gas on the environment.

W
1 → 2

  =  Q
1
 = µ R T

1
  ln 

V

V

2

1







          (12.23)

(b) Step 2 → 3 Adiabatic expansion of the gas
from (P

2
, V

2
, T

1
) to (P

3
, V

3
, T

2
)

Work done by the gas, using
Eq. (12.16), is

W
R T T

2 3→ =
−( )

−
  

  

µ 1 2

1γ
(12.24)

(c) Step 3 → 4 Isothermal compression of the
gas from (P

3
, V

3
, T

2
) to (P

4
, V

4
, T

2
).

Heat released (Q
2
) by the gas to the reservoir

at temperature T
2
 is given by Eq. (12.12).  This

is also the work done (W
3
 

→ 4
) on the gas by the

environment.

W RT
V

V
3  4→ = =







Q2 µ 2

3

4

ln (12.25)

(d) Step 4 → 1 Adiabatic compression of the
gas from (P

4
, V

4
, T

2
) to (P

1
,V

1
, T

1
).

Work done on the gas, [using Eq.(12.16), is

W R 
T T

4  1→ =
−





µ

γ

1 2

-1
(12.26)

From  Eqs. (12.23) to (12.26) total work done
by the gas in one complete cycle is

W = W1 → 2  + W2 → 3 – W3  → 4 – W4 → 1

= µ RT
1
  ln 

V

V

2

1







 – µ RT

2
  ln

V

V

3

4







(12.27)

The efficiency η of the Carnot engine is

1 2

1 1

W Q

Q Q
η = = −       

= −





















    1
T

T

V

V

V

V

2

1

3

4

2

1

In

In

(12.28)

Now since step 2  → 3 is an adiabatic process,

T  V T  V1 2 2 3

γ γ− −

=
1 1

i.e.
V

V
=  

T

T

2

3

2

1

  







−1 1/( )γ

(12.29)

Similarly, since step 4 → 1 is an adiabatic
process

T  V T  V2 4 1 1

γ γ− −
=

1 1

i.e.
V

V
= 

T

T

1

4

2

1








−1 1/γ

(12.30)

From Eqs. (12.29) and (12.30),

V

V
= 

V

V

3

4

2

1
    (12.31)

Using Eq. (12.31) in Eq. (12.28), we get

η =   1 −
T

T

2

1

  (Carnot engine) (12.32)

We have already seen that a Carnot engine

is a reversible engine. Indeed it is the only

reversible engine possible that works between

two reservoirs at different temperatures.  Each

step of the Carnot cycle given in Fig. 12.11 can

be reversed. This will amount to taking heat Q
2

from the cold reservoir at T
2
, doing work W on

the system, and transferring heat Q
1
 to the hot

reservoir. This will be a reversible refrigerator.

We next establish the important result

(sometimes called Carnot’s theorem) that

(a) working between two given temperatures T
1

and T
2
 of the hot and cold reservoirs respectively,

no engine can have efficiency more than that of

the Carnot engine and (b) the efficiency of the

Carnot engine is independent of the nature of

the working substance.

To prove the result (a), imagine a reversible
(Carnot) engine R and an irreversible engine I
working between the same source (hot reservoir)
and sink (cold reservoir). Let us couple the
engines, I and R, in such a way so that I acts
like a heat engine and R acts as a refrigerator.
Let I absorb heat Q

1
 from the source, deliver

work W ′ and release the heat Q
1
- W′

 
 to the sink.

We arrange so that R returns the same heat Q
1

to the source, taking heat Q
2
 from the sink and

requiring work W = Q
1
 – Q

2
 to be done on it.
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SUMMARY

1. The zeroth law of thermodynamics states that ‘two systems in thermal equilibrium with a

third system separately are in thermal equilibrium with each other’.  The Zeroth Law leads
to the concept of temperature.

2. Internal energy of a system is the sum of kinetic energies and potential energies of the
molecular constituents of the system. It does not include the over-all kinetic energy of
the system. Heat and work are two modes of energy transfer to the system.  Heat is the
energy transfer arising due to temperature difference between the system and the
surroundings. Work is energy transfer brought about by other means, such as moving
the piston of a cylinder containing the gas, by raising or lowering some weight connected
to it.

3. The first law of thermodynamics is the general law of conservation of energy applied to
any system in which energy transfer from or to the surroundings (through heat and
work) is taken into account.  It states that

∆Q  = ∆U  +  ∆W

where ∆Q is the heat supplied to the system, ∆W is the work done by the system and ∆U

is the change in internal energy of the system.

Now suppose ηR < ηI i.e. if R were to act
as an engine it would give less work output
than that of I i.e. W < W ′ for a given Q

1
. With R

acting like a refrigerator, this would mean
Q

2
 =  Q

1
 – W >  Q

1
 – W ′. Thus, on the  whole,

the coupled I-R system extracts heat
(Q

1
 – W) – (Q

1
 – W ′) = (W ′ – W ) from the cold

reservoir and delivers the same amount of  work
in one cycle, without any change in the source
or anywhere else. This is clearly against the
Kelvin-Planck statement of the Second Law of
Thermodynamics.  Hence the assertion η

I
 > η

R

is wrong.  No engine can have efficiency greater

than that of the Carnot engine. A similar
argument can be constructed to show that a
reversible engine with one particular substance
cannot be more efficient than the one using
another substance. The maximum efficiency of
a Carnot engine given by Eq. (12.32) is
independent of the nature of the system
performing the Carnot cycle of operations. Thus
we are justified in using an ideal gas as a system
in the calculation of efficiency η of a Carnot
engine. The ideal gas has a simple equation of
state, which allows us to readily calculate η, but
the final result for η, [Eq. (12.32)], is true for
any Carnot engine.

This final remark shows that in a Carnot
cycle,

2

1

2

1

T

T
= 

Q

Q
(12.33)

is a universal relation independent of  the nature
of the system.  Here Q

1
 and Q

2
 are respectively,

the heat absorbed and released isothermally
(from the hot and to the cold reservoirs) in a
Carnot engine. Equation (12.33), can, therefore,
be used as a relation to define a truly universal
thermodynamic temperature scale that is
independent of any particular properties of the
system used in the Carnot cycle.  Of course, for
an ideal gas as a working substance, this
universal temperature is the same as the ideal

gas temperature introduced in section 12.11.

I

R

W

Fig. 12.12 An irreversible engine (I) coupled to a

reversible refrigerator (R). If W ′ > W, this

would amount to extraction of heat

W ′ – W from the sink and its full

conversion to work, in contradiction with

the Second Law of Thermodynamics.
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4. The specific heat capacity of a substance is defined by

s
m

Q

T
=

1 ∆

∆

where m is the mass of the substance and ∆Q is the heat required to change its
temperature by ∆T.  The molar specific heat capacity of a substance is defined by

1 Q
C

Tµ

∆
=

∆

where µ is the number  of moles of the substance. For a solid, the law of equipartition
of energy gives

C  =  3 R

which generally agrees with experiment at ordinary temperatures.

Calorie is the old unit of heat. 1 calorie is the amount of heat required to raise the
temperature of 1 g of water from 14.5 °C to 15.5 °C.  1 cal  =  4.186 J.

5. For an ideal gas, the molar specific heat capacities at constant pressure and volume
satisfy the relation

Cp – Cv  = R

where R is the universal gas constant.

6. Equilibrium states of a thermodynamic system are described by state variables. The
value of a state variable depends only on the particular state, not on the path used to
arrive at that state.  Examples of state variables are pressure (P ), volume (V ), temperature
(T ), and mass (m ).  Heat and work are not state variables.  An Equation of State (like
the ideal gas equation PV  =  µ RT ) is a relation connecting different state variables.

7. A quasi-static process is an infinitely slow process such that the system remains in
thermal and mechanical equilibrium with the surroundings throughout. In a
quasi-static process, the pressure and temperature of the environment can differ from
those of the system only infinitesimally.

8. In an isothermal expansion of an ideal gas from volume V
1
 to V

2
 at temperature T the

heat absorbed (Q) equals the work done (W ) by the gas, each given by

Q  =  W  =   µ R T   ln 








1

2

V

V

9. In an adiabatic process of an ideal gas

PV
γ
  =  constant

where
p

v

C

C
γ =

Work done by an ideal gas in an adiabatic change of state from (P
1
, V

1
, T

1
) to (P

2
, V

2
, T

2
)

is

( )
  

 – 1

1 2 R T T
W

µ

γ

−
=

10. Heat engine is a device in which a system undergoes a cyclic process resulting in

conversion of heat into work. If Q
1
 is the heat absorbed from the source, Q

2
 is the heat

released to the sink, and the work output in one cycle is W, the efficiency η of the engine
is:

   1  2

1 1

 QW

Q Q
η = = −
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11. In a refrigerator or a heat pump, the system extracts heat Q
2
 from the cold reservoir and

releases Q
1
 amount of heat to the hot reservoir, with work W done on the system.  The

co-efficient of performance of a refrigerator is given by

21

22

QQ

Q 

W

Q

  
   

−
== α

12. The second law of thermodynamics disallows some processes consistent with the First
Law of Thermodynamics. It states

Kelvin-Planck statement

No process is possible whose sole result is the absorption of heat from a reservoir and
complete conversion of the heat into work.

Clausius statement

No process is possible whose sole result is the transfer of heat from a colder object to a
hotter object.

Put simply, the Second Law implies that no heat engine can have efficiency η equal to
1 or no refrigerator can have co-efficient of performance α equal to infinity.

13. A process is reversible if it can be reversed such that both the system and the surroundings
return to their original states, with no other change anywhere else in the universe.
Spontaneous processes of nature are irreversible. The idealised reversible process is a
quasi-static process with no dissipative factors such as friction, viscosity, etc.

14. Carnot engine is a reversible engine operating between two temperatures T
1
 (source) and

T
2
 (sink). The Carnot cycle consists of two isothermal processes connected by two

adiabatic processes. The efficiency of a Carnot engine is given by

1

2

T

T 
   1 −= η (Carnot engine)

No engine operating between two temperatures can have efficiency greater than that of
the Carnot engine.

15. If Q > 0, heat is added to the system

If Q < 0, heat is removed to the system

If W > 0, Work is done by the system

If W < 0, Work is done on the system

Quantity Symbol Dimensions Unit Remark

Co-efficienty of volume α
v

[K–1] K–1 α
v
 = 3 α

1

expansion

Heat supplied to a system ∆Q [ML2 T–2] J Q is not a state
variable

Specific heat capacity s [L2 T–2 K–1] J kg–1 K–1

Thermal Conductivity K [MLT–3 K–1] J s–1 K–1 H = – KA 
d

d

t

x
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POINTS TO PONDER

1. Temperature of a body is related to its average internal energy, not to the kinetic energy
of motion of its centre of mass. A bullet fired from a gun is not at a higher temperature
because of its high speed.

2. Equilibrium in thermodynamics refers to the situation when macroscopic variables
describing the thermodynamic state of a system do not depend on time.  Equilibrium of
a system in mechanics means the net external force and torque on the system are zero.

3. In a state of thermodynamic equilibrium, the microscopic constituents of a system are
not in equilibrium (in the sense of mechanics).

4. Heat capacity, in general, depends on the process the system goes through when heat is
supplied.

5. In isothermal quasi-static processes, heat is absorbed or given out by the system even
though at every stage the gas has the same temperature as that of the surrounding
reservoir.  This is possible because of the infinitesimal difference in temperature between

the system and the reservoir.

EXERCISES

12.1 A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C.
If the geyser operates on a gas burner, what is the rate of consumption of the fuel if
its heat of combustion is 4.0 × 104 J/g ?

12.2 What amount of heat must be supplied to 2.0 × 10–2 kg of nitrogen (at room
temperature) to raise its temperature by 45 °C at constant pressure ? (Molecular
mass of N2 = 28; R = 8.3 J mol–1 K–1.)

12.3 Explain why

(a) Two bodies at different temperatures T1 and T2 if brought in thermal contact do
not necessarily settle to the mean temperature (T1 + T2 )/2.

(b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent
the different parts of a plant from getting too hot) should have high specific
heat.

(c) Air pressure in a car tyre increases during driving.

(d) The climate of a harbour town is more temperate than that of a town in a desert
at the same latitude.

12.4 A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature
and pressure. The walls of the cylinder are made of a heat insulator, and the piston
is insulated by having a pile of sand on it. By what factor does the pressure of the
gas increase if the gas is compressed to half its original volume ?

12.5 In changing the state of a gas adiabatically from an equilibrium state A to another
equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the
gas is taken from state A to B via a process in which the net heat absorbed by the
system is 9.35 cal, how much is the net work done by the system in the latter case ?
(Take 1 cal = 4.19 J)

12.6 Two cylinders A and B of equal capacity are connected to each other via a stopcock.
A contains a gas at standard temperature and pressure. B is completely evacuated.
The entire system is thermally insulated. The stopcock is suddenly opened. Answer
the following :

(a) What is the final pressure of the gas in A and B ?

(b) What is the change in internal energy of the gas ?

(c) What is the change in the temperature of the gas ?

(d) Do the intermediate states of the system (before settling to the final equilibrium
state) lie on its P-V-T surface ?
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12.7 A steam engine delivers 5.4×108J of work per minute and services 3.6 × 109J of heat
per minute from its boiler. What is the efficiency of the engine? How much heat is
wasted per minute?

12.8 An electric heater supplies heat to a system at a rate of 100W. If system performs
work at a rate of 75 joules per second. At what rate is the internal energy increasing?

12.9 A thermodynamic system is taken from an original state to an intermediate state by
the linear process shown in Fig. (12.13)

Fig. 12.13

Its volume is then reduced to the original value from E to F by an isobaric process.
Calculate the total work done by the gas from D to E to F

12.10 A refrigerator is to maintain eatables kept inside at 90C. If room temperature is 360C,
calculate the coefficient of performance.
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CHAPTER THIRTEEN

KINETIC THEORY

13.1 INTRODUCTION

Boyle discovered the law named after him in 1661. Boyle,
Newton and several others tried to explain the behaviour of
gases by considering that gases are made up of tiny atomic
particles. The actual atomic theory got established more than
150 years later. Kinetic theory explains the behaviour of gases
based on the idea that the gas  consists of rapidly moving
atoms or molecules. This is possible as the inter-atomic forces,
which are short range forces that are important for solids
and liquids,  can be neglected for gases. The kinetic theory
was developed in the nineteenth century by Maxwell,
Boltzmann and others. It has been remarkably successful. It
gives a molecular interpretation of  pressure and temperature
of a gas, and is consistent with gas laws and Avogadro’s
hypothesis. It correctly explains specific heat capacities of
many gases. It also relates measurable properties of gases
such as viscosity, conduction and diffusion with molecular
parameters, yielding estimates of molecular sizes and masses.
This chapter gives an introduction to kinetic theory.

13.2 MOLECULAR NATURE OF MATTER

Richard Feynman, one of the great physicists of 20th century

considers the discovery that “Matter is made up of atoms” to
be a very significant one. Humanity may suffer annihilation

(due to nuclear catastrophe) or extinction (due to
environmental disasters) if we do not act wisely. If that
happens, and all of scientific knowledge were to be destroyed

then Feynman would like the ‘Atomic Hypothesis’ to be
communicated to the next generation of creatures in the

universe. Atomic Hypothesis: All things are made of atoms -
little particles that move around in perpetual motion,
attracting each other when they are a little distance apart,

but repelling upon being squeezed into one another.
Speculation that matter may not be continuous, existed in

many places and cultures. Kanada in India and Democritus

13.1 Introduction

13.2 Molecular nature of matter

13.3 Behaviour of gases

13.4 Kinetic theory of an ideal gas

13.5 Law of equipartition of energy

13.6 Specific heat capacity

13.7 Mean free path

Summary

Points to ponder

Exercises

Additional exercises
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in Greece had suggested that matter may consist
of indivisible constituents. The scientific ‘Atomic
Theory’  is usually credited to John Dalton. He
proposed the atomic  theory to explain the laws
of definite and multiple proportions obeyed by
elements when they combine into compounds.
The first law says that any given compound has,
a fixed proportion by mass of its constituents.
The second law says that when two elements
form more than one compound, for a fixed mass
of one element, the masses of the other elements
are in ratio of small integers.

To explain the laws Dalton suggested, about
200 years ago,  that the smallest constituents
of an element are atoms. Atoms of one element
are identical but differ from those of other
elements.  A small number of atoms of each
element combine to form a molecule of the
compound. Gay Lussac’s law, also given in early
19th century, states:  When gases combine
chemically to yield another gas, their volumes
are in the ratios of small integers.  Avogadro’s
law  (or hypothesis) says: Equal volumes of all
gases at equal temperature and pressure have
the same number of molecules.  Avogadro’s law,
when combined with Dalton’s theory explains
Gay  Lussac’s law.  Since the elements are often
in the form of molecules, Dalton’s atomic theory
can also be referred to as the molecular theory

of matter. The theory is now well accepted by
scientists. However even at the end of the
nineteenth century there were famous scientists
who did not believe in atomic theory !

From many observations, in recent times we
now know that  molecules (made up of one or
more atoms) constitute matter. Electron
microscopes  and scanning tunnelling
microscopes enable us to even see them. The
size of an atom is about an angstrom (10 -10   m).
In solids, which are tightly packed, atoms are
spaced about a few  angstroms (2 Å) apart. In
liquids the separation between atoms is also
about the same.  In liquids the atoms  are not
as rigidly fixed as in solids, and can move
around. This enables a liquid to flow.  In gases
the interatomic distances are in tens of
angstroms.  The average distance a molecule
can travel without colliding is called the  mean
free path. The mean free path, in gases, is of
the order of thousands of angstroms. The atoms
are much freer in gases and can travel long
distances without colliding. If they are not
enclosed, gases disperse away. In solids and
liquids the closeness makes the interatomic force
important. The force has a long range attraction
and a short range repulsion. The atoms attract
when they are at a few angstroms but repel when
they come closer. The static appearance of a gas

Atomic Hypothesis in Ancient India and Greece

Though John Dalton is credited with the introduction of atomic viewpoint in modern science, scholars in
ancient India and Greece conjectured long before the existence of atoms and molecules.  In the Vaiseshika
school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in
considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter.
It was argued that if matter could be subdivided without an end, there would be no difference between a
mustard seed and the Meru mountain.  The four kinds of atoms (Paramanu — Sanskrit word for the
smallest particle) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic
mass and other attributes, were propounded. Akasa (space) was thought to have no atomic structure and
was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a
diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending
upon the nature and ratio of the constituent atoms.  The size of the atoms was also estimated, by conjecture
or by methods that are not known to us.  The estimates vary. In Lalitavistara, a famous biography of the
Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic
size, of the order of 10 –10 m.
   In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The
word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in
shape, size and other properties and this resulted in the different properties of the substances formed
by their combination.  The atoms of water were smooth and round and unable to ‘hook’ on to each
other, which is why liquid /water flows easily.   The atoms of earth were rough and jagged, so they held
together to form hard substances.  The atoms of fire were thorny which is why it caused painful burns.
These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they
were intuitive conjectures and speculations not tested and modified by quantitative experiments - the
hallmark of modern science.
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is misleading. The gas is full of activity and the

equilibrium is a dynamic one. In dynamic

equilibrium, molecules collide and change their

speeds during the collision. Only the average

properties are constant.

Atomic theory is not the end of our quest, but

the beginning. We now know that atoms are not

indivisible or elementary. They consist of a

nucleus and electrons. The nucleus itself is made

up of protons and neutrons. The protons and

neutrons are again made up of quarks. Even

quarks may not be the end of the story. There

may be string like elementary entities. Nature

always has surprises for us, but the search for

truth is often enjoyable and the discoveries

beautiful. In this chapter, we shall limit ourselves

to understanding the behaviour of gases (and a

little bit of solids), as a collection of moving

molecules in incessant motion.

13.3   BEHAVIOUR OF GASES

Properties of gases are easier to understand than

those of solids and liquids. This is mainly

because in a gas, molecules are far from each

other and their mutual interactions are

negligible except when two molecules collide.

Gases at low pressures and high temperatures

much above that at which they liquefy (or

solidify) approximately satisfy a simple relation

between their pressure, temperature and volume

given by (see Chapter 11)

PV = KT (13.1)

for a given sample of the gas. Here T is the

temperature in kelvin or (absolute)  scale. K is  a

constant for the given sample but varies with

the volume of the gas. If we now  bring in  the

idea of atoms or molecules, then K is proportional

to the number of molecules, (say) N in the

sample. We can write K = N k . Observation tells

us that this k is same for all gases. It is called

Boltzmann constant and is denoted by k
B
.

As 
1 1 2 2

1 1 2 2

P V P V

N T N T
=  = constant = k

B
(13.2)

if P, V and T are same, then N is also same for

all gases. This is Avogadro’s hypothesis, that  the

number of molecules per unit volume is

the same for all gases at a fixed temperature and

pressure. The number in 22.4 litres of any gas

is 6.02 × 1023.  This is known as Avogadro

number  and is denoted by N
A
. The mass of 22.4

litres of any gas is equal to its molecular weight

in grams at S.T.P (standard temperature 273 K

and pressure 1 atm). This amount of substance

is called a mole (see Chapter 2 for a more precise

definition). Avogadro had guessed the equality of

numbers in equal volumes of gas at a fixed

temperature and pressure from chemical

reactions.  Kinetic  theory justifies this hypothesis.

The perfect gas equation can be written as

PV = µ RT (13.3)

where  µ   is the number of moles and R  = N
A

k
B
 is a universal constant. The temperature T is

absolute temperature.  Choosing kelvin scale for

John Dalton (1766 – 1844)

He was an English chemist. When different types of atoms combine,
they obey certain simple laws. Dalton’s atomic theory explains these
laws in a simple way. He also gave a theory of colour
blindness.

Amedeo Avogadro (1776 – 1856)

He made a brilliant guess that equal volumes of gases
have equal number of molecules at the same
temperature and pressure. This helped in
understanding the combination of different gases in

a very simple way. It is now called Avogadro’s hypothesis (or law). He also
suggested that the smallest constituent of gases like hydrogen, oxygen and
nitrogen are not atoms but diatomic molecules.
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absolute temperature, R = 8.314 J mol–1K–1.
Here

0 A

M N

M N
µ = = (13.4)

where M is the mass of the gas containing N
molecules, M

0
 is the molar mass and N

A
 the

Avogadro’s number. Using  Eqs. (13.4) and (13.3)
can also be written as

PV = k
B
 NT or P = k

B
 nT

P (atm)
Fig.13.1 Real gases approach ideal gas behaviour

at low pressures and high temperatures.

where  n is the number density, i.e. number of
molecules per unit volume. k

B
 is  the Boltzmann

constant introduced above. Its value in SI units
is 1.38 × 10–23 J K–1.

Another useful form of Eq. (13.3) is

0

RT
P

M

ρ
= (13.5)

where ρ is the mass density of the gas.
A gas that satisfies Eq. (13.3) exactly at all

pressures and temperatures is defined to be an
ideal gas. An ideal gas is a simple theoretical
model of a gas. No real gas is truly ideal.
Fig. 13.1 shows departures from ideal gas
behaviour for a real gas at three different
temperatures. Notice that all curves approach
the ideal gas behaviour for low  pressures and
high temperatures.

At low pressures or high temperatures the
molecules are far apart and molecular
interactions are negligible. Without interactions
the gas behaves like an ideal one.

If we fix µ and T in Eq. (13.3), we get

PV = constant (13.6)

i.e., keeping temperature constant, pressure of
a given mass of gas varies inversely with volume.
This is the famous Boyle’s law. Fig. 13.2  shows
comparison between experimental P-V curves
and the theoretical curves predicted by Boyle’s
law. Once again you see that the  agreement is
good at high temperatures and  low pressures.
Next, if you fix P, Eq. (13.1) shows that V ∝  T
i.e., for a fixed pressure, the volume of a gas is
proportional to its absolute temperature T

(Charles’ law). See Fig. 13.3.

Fig.13.2 Experimental P-V curves (solid lines) for

steam at three temperatures compared

with Boyle’s law (dotted lines). P is in units

of 22 atm and V in units of 0.09 litres.

Finally, consider a mixture of non-interacting

ideal  gases: µ
1
  moles of gas 1, µ

2
 moles of gas

2, etc. in a vessel of volume V at temperature T

and  pressure P. It is then found that the

equation  of state of the mixture is :

PV = ( µ
1
 + µ

2 
+…  ) RT (13.7)

i.e. 1 2 ...
RT RT

P
V V

µ µ= + + (13.8)

= P
1
 + P

2
 + … (13.9)

Clearly P
1
 =    µ

1
 R T/V   is the pressure that

gas 1 would  exert at the same conditions of

volume and  temperature if no other gases were

present. This is called the partial pressure of the

gas. Thus, the total pressure of a mixture of ideal

gases is the sum of partial pressures. This is

Dalton’s law of partial pressures.

(
)

–
1

–
1

J
m

o
l

K
p
V T

µ
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Fig. 13.3 Experimental T-V curves (solid lines) for

CO
2
 at three pressures compared with

Charles’ law (dotted lines). T is in units of

300 K and V in units of 0.13 litres.

We next consider some examples which give
us information about the volume occupied by
the molecules and the volume of a single
molecule.

Example 13.1 The density of water is  1000
kg m–3. The density of water vapour at 100 °C
and 1 atm pressure is 0.6 kg m–3. The
volume of a molecule multiplied by the total
number gives ,what is called, molecular
volume. Estimate the ratio (or fraction) of
the molecular volume  to the total volume
occupied by the water vapour under the
above conditions of temperature and
pressure.

Answer For  a given mass of water molecules,
the density is less if volume is large. So the
volume of the vapour is  1000/0.6  = 1/(6 ×10 -4 )
times larger.  If densities of bulk water and water
molecules are same, then the fraction of
molecular volume to the total volume in liquid
state is 1. As volume in vapour state has
increased, the fractional volume is less by the
same amount, i.e.  6×10-4.       t

Example 13.2   Estimate the volume of a
water molecule using the data in Example
13.1.

Answer In the liquid (or solid) phase, the
molecules of water are quite closely packed. The

density of water molecule may therefore, be
regarded as roughly equal to the density of bulk
water = 1000 kg m–3. To estimate the volume of
a water molecule, we need to know the mass of
a single water molecule. We know that 1 mole
of water has a mass approximately equal to

(2 + 16)g  = 18 g  =  0.018 kg.
Since 1 mole   contains  about   6 × 1023

molecules   (Avogadro’s  number),   the mass of
a molecule of water is  (0.018)/(6 × 1023) kg  =
3 × 10–26 kg.   Therefore, a rough estimate of the
volume of a water  molecule is as follows :

Volume of a water molecule
= (3 × 10–26 kg)/ (1000 kg m–3)
= 3 × 10–29 m3

= (4/3) π  (Radius)3

Hence, Radius ≈ 2 ×10-10  m = 2 Å   t

Example 13.3   What is the average
distance between atoms   (interatomic
distance) in water? Use the data given in
Examples 13.1 and 13.2.

Answer :   A given mass of water in vapour state
has 1.67×103 times the volume of the same mass
of water in liquid state (Ex. 13.1). This is also
the increase in the amount of volume available
for each molecule of water. When volume
increases by 103 times the radius increases by
V1/3 or 10 times, i.e., 10 × 2 Å  = 20 Å. So the
average distance is 2 × 20 = 40  Å.   t

Example 13.4 A vessel contains two non-
reactive gases : neon (monatomic) and
oxygen (diatomic). The ratio of their partial
pressures is 3:2. Estimate the ratio of  (i)
number of molecules and (ii) mass density
of neon and oxygen in the vessel. Atomic
mass of Ne = 20.2 u, molecular mass of O

2

= 32.0 u.

Answer Partial pressure of a gas in a mixture is
the pressure it would have for the same volume
and temperature if it alone occupied the vessel.
(The total pressure of a mixture of non-reactive
gases is the sum of partial pressures due to its
constituent gases.) Each gas (assumed ideal)
obeys the gas law. Since V and T are common to
the two gases,  we  have  P

1
V = µ 

1
 RT and P

2
V =

µ
2
 RT, i.e. (P

1
/P

2
) = (µ

1 
/ µ

2
). Here 1 and 2 refer

to neon and oxygen respectively. Since (P
1
/P

2
) =

(3/2) (given), (µ
1
/ µ

2
) = 3/2.

t
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(i) By definition µ
1
 = (N

1
/N

A
 ) and µ

2 
= (N

2
/N

A
)

where N
1
 and N

2
 are the number of molecules

of 1 and 2, and N
A
 is the Avogadro’s number.

Therefore, (N
1
/N

2
) = (µ

1 
/ µ

2
)  = 3/2.

(ii) We can also write µ
1
 = (m

1
/M

1
) and µ

2
 =

(m
2
/M

2
) where m

1 
and m

2
 are the masses of

1 and 2; and M
1
 and M

2
 are their molecular

masses. (Both m
1
 and M

1
; as well as m

2
 and

M
2
 should be expressed in the same units).

If ρ
1
 and ρ

2 
 are the mass densities of 1 and

2 respectively,  we have

ρ

ρ

µ

µ

1

2

1

2

1

2

1

2

1

2

= = = ×






m V

m V

m

m

M

M

/

/

3 20.2
0.947

2 32.0
= × =   t

13.4 KINETIC THEORY OF AN IDEAL GAS

Kinetic theory of gases is based on the molecular
picture of matter. A given amount of gas is a
collection of a large number of molecules
(typically of the order of Avogadro’s number) that
are in incessant random motion. At ordinary
pressure and temperature, the average distance
between molecules is a factor of 10 or more than
the typical size of a molecule (2 Å). Thus,
interaction between molecules is negligible and
we can assume that they move freely in straight
lines according to Newton’s first law. However,
occasionally, they come close to each other,
experience intermolecular forces and their
velocities change.  These interactions are called
collisions. The molecules collide incessantly
against each other or with the walls and change
their velocities.  The collisions are considered to
be elastic. We can derive an expression for the
pressure of a gas based on the kinetic theory.

We begin with the idea that molecules of a
gas are in incessant random motion, colliding
against one another and with the walls of the
container. All collisions between molecules
among themselves or between molecules and the
walls are elastic. This implies that  total kinetic
energy is conserved. The total momentum is
conserved as usual.

13.4.1 Pressure of an Ideal Gas

Consider a gas enclosed in a cube of side l. Take
the axes to be parallel to the sides of the cube,
as shown in Fig. 13.4.  A molecule with velocity

(v
x
, v

y
, v

z
 ) hits the planar wall parallel to yz-

plane of area A (= l2). Since the collision is elastic,
the molecule rebounds with the same velocity;
its y and z components of velocity do not change
in the collision but the x-component reverses
sign. That is, the velocity after collision is
(-v

x
, v

y
, v

z
 ) . The change in momentum of the

molecule is:  –mv
x
 – (mv

x
) = – 2mv

x 
. By the

principle of conservation of momentum, the
momentum imparted to the wall in the collision
= 2mv

x
 .

To calculate the force (and pressure) on the
wall, we need to calculate momentum imparted
to the wall per unit time. In a small time interval
∆t, a molecule with x-component of velocity v

x

will hit the wall if it is within the distance v
x
 ∆t

from the wall. That is, all molecules within the
volume Av

x 
∆t only can hit the wall in time ∆t.

But, on the average, half of these are moving
towards the wall and the other half away from
the wall. Thus, the number of molecules with

velocity (v
x
, v

y
, v

z
 )  hitting the wall in time ∆t is

½A v
x  

∆t n, where n is the number of molecules

per unit volume. The total momentum

transferred to the wall by these molecules in
time ∆t  is :

Q = (2mv
x
) (½ n A v

x
 ∆t ) (13.10)

The force on the wall is the rate of momentum
transfer Q/∆t  and pressure is force per unit
area :

P =  Q /(A ∆t)  =  n m v
x
2 (3.11)

Actually, all molecules in a gas do not have
the same velocity; there is a distribution in
velocities.  The  above equation, therefore, stands
for pressure due to the group of molecules with
speed v

x
  in  the x-direction and n stands for the

number density of that group of molecules. The

Fig. 13.4 Elastic collision of a gas molecule with

the wall of the container.
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total  pressure is obtained by summing over the
contribution due to all groups:

P = n m 2
xv (13.12)

where 2
xv  is the average of  v

x
2  .  Now the gas

is isotropic, i.e. there is no preferred direction
of velocity of the molecules in the vessel.
Therefore, by symmetry,

2
xv  = 2

yv  = 2
zv

= (1/3) [ 2
xv  +  2

yv  + 2
zv ] = (1/3) 2v (13.13)

where v is the speed and 2v   denotes the mean

of the squared speed. Thus

P = (1/3) n m 2v (13.14)

Some remarks on this derivation. First,
though we choose the container to be a cube,
the shape of the vessel really is immaterial. For
a vessel of arbitrary shape, we can always choose
a small infinitesimal (planar) area and carry
through the steps above. Notice that both A and
∆t do not appear in the final result. By Pascal’s
law, given in Ch. 10,  pressure in one portion of

the gas  in equilibrium is the same as anywhere
else. Second, we have ignored any collisions in
the derivation. Though this assumption is
difficult to justify rigorously, we can qualitatively
see that it will not lead to erroneous results.
The number of molecules hitting the wall in time
∆t was found to be ½ n Av

x
 ∆t. Now the collisions

are random and the gas is in a steady state.
Thus, if a molecule with velocity (v

x
, v

y
, v

z
 )

acquires a  different velocity due to collision with
some molecule, there will always be some other
molecule with a different initial velocity which
after a collision acquires the velocity  (v

x
, v

y
, v

z
 ).

If this were not so, the distribution of velocities
would not remain steady. In any case we are

finding 2
xv . Thus, on the whole, molecular

collisions (if they are not too frequent and the
time spent in a collision is negligible compared
to time between collisions)  will not affect the
calculation above.

13.4.2 Kinetic Interpretation of Temperature

Equation (13.14) can be written as

PV   =  (1/3) nV m 2v (13.15a)

Founders of Kinetic Theory of Gases

James Clerk Maxwell (1831 – 1879), born in Edinburgh,
Scotland, was among the greatest physicists of the nineteenth
century.  He derived the thermal velocity distribution of molecules
in a gas and was among the first to obtain reliable estimates of
molecular parameters from measurable quantities like viscosity,
etc.  Maxwell’s greatest achievement was the unification of the laws
of electricity and magnetism (discovered by Coulomb, Oersted,
Ampere and Faraday) into a consistent set of equations now called
Maxwell’s equations. From these he arrived at the most important
conclusion that light is an
electromagnetic wave.
Interestingly, Maxwell did not
agree with the idea (strongly
suggested by the Faraday’s
laws of electrolysis) that
electricity was particulate in
nature.

Ludwig Boltzmann
(1844 – 1906) born in

Vienna, Austria, worked on the kinetic theory of gases
independently of Maxwell.  A firm advocate of atomism, that is
basic to kinetic theory, Boltzmann provided a statistical
interpretation of the Second Law of thermodynamics and the
concept of entropy. He is regarded as one of the founders of classical
statistical mechanics. The proportionality constant connecting
energy and temperature in kinetic theory is known as Boltzmann’s

constant in his honour.
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PV   =   (2/3) N x ½ m 2v (13.15b)

where N (= nV ) is the number of molecules in
the sample.

The quantity in the bracket is the average
translational kinetic energy of the molecules in
the gas. Since the internal energy E of an ideal
gas is purely kinetic*,

E = N × (1/2) m 2v (13.16)

Equation (13.15) then gives :
PV = (2/3) E (13.17)
We are now ready for a kinetic interpretation

of temperature. Combining Eq. (13.17) with the
ideal gas Eq. (13.3), we get

E = (3/2)  k
B  

NT                                             (13.18)

or  E/ N = ½  m 2v    =   (3/2) k
B
T (13.19)

i.e., the average kinetic energy of a molecule is
proportional to the absolute temperature of the
gas; it is independent of pressure, volume or
the nature of the ideal gas. This is a fundamental
result relating temperature, a macroscopic
measurable parameter of a gas
(a thermodynamic variable as it is called) to a
molecular quantity, namely the average kinetic
energy of a molecule. The two domains are
connected by the Boltzmann constant. We note
in passing that Eq. (13.18) tells us that internal
energy of an ideal gas depends only on
temperature, not on pressure or volume. With
this interpretation of temperature, kinetic theory
of an ideal gas is completely consistent with the
ideal gas equation and the various gas laws
based on it.

For a mixture of non-reactive ideal gases, the
total pressure gets contribution from each gas
in the mixture. Equation (13.14) becomes

P = (1/3) [n
1
m

1
2
1v  + n

2 
m

2
 2

2v +…  ] (13.20)

In equilibrium, the average kinetic energy of
the molecules of different gases will be equal.
That is,

½  m
1
 2

1v  = ½ m
2
 2

2v = (3/2) k
B
 T

so that

P = (n
1
 + n

2
 +…  ) k

B
 T (13.21)

which is Dalton’s law of partial pressures.
From Eq. (13.19), we can get an idea of the

typical speed of molecules in a gas. At a
temperature T = 300 K, the mean square speed
of a molecule in nitrogen gas is :

2 –26

26

28
4.65 10

6.02 10

N

A

M
m

N
= = = ×

×
 kg.

2v   =  3 k
B
 T / m    =    (516)2 m2s-2

The square root of 2v  is known as root mean

square (rms) speed and is denoted by v
rms

,

( We can also write    2v     
as   < v2 >.)

v
rms

   =    516 m s-1

The speed is of the order of the speed of sound
in air. It follows from Eq. (13.19) that at the same
temperature, lighter molecules have greater rms
speed.

Example 13.5 A flask contains argon and
chlorine in the ratio of 2:1 by mass.  The
temperature of the mixture is 27 °C. Obtain
the ratio of  (i) average kinetic energy per
molecule, and (ii) root mean square speed
v

rms
 of the molecules of the two gases.

Atomic mass of argon = 39.9 u; Molecular
mass of chlorine = 70.9 u.

Answer The important point to remember is that
the average kinetic energy (per molecule) of any
(ideal) gas (be it monatomic like argon, diatomic
like chlorine or polyatomic) is always equal to
(3/2) k

B
T. It depends only on temperature, and

is independent of the nature of the gas.
(i) Since argon and chlorine both have the same

temperature in the flask, the ratio of average
kinetic energy (per molecule) of the two gases
is 1:1.

(ii) Now  ½ m v
rms

2  =  average kinetic energy per
molecule =  (3/2) ) k

B
T where m is the mass

of a molecule of the gas. Therefore,

( )
( )

( )
( )

( )
( )

2

Cl ClAr

2
Ar ArCl

rms

rms

m M

m M
= =

v

v = 
70.9

39.9
 =1.77

where M denotes the molecular mass of the gas.
(For argon, a molecule is just an atom of argon.)
Taking square root of both sides,

( )
( )

Ar

Cl

rms

rms

v

v
 =  1.33

You should note that the composition of the
mixture by mass is quite irrelevant to the above

* E denotes the translational part of the internal energy U that may include energies due to other degrees of

freedom also. See section 13.5.
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calculation. Any other proportion by mass of
argon and chlorine would give the same answers
to (i) and (ii), provided the temperature remains
unaltered. t

Example 13.6   Uranium has two isotopes
of masses 235 and 238 units. If both are
present in Uranium hexafluoride gas which
would have the  larger average speed ? If
atomic mass of fluorine is 19 units,
estimate the percentage difference in
speeds at any temperature.

Answer  At a fixed temperature the average
energy  = ½ m <v2 > is constant. So  smaller the

mass of the molecule, faster will be the speed.
The ratio of speeds is inversely proportional to
the square root of the ratio of the masses. The
masses are 349 and 352 units. So

v
349

 / v
352

  =   ( 352/ 349)1/2 = 1.0044 .

Hence difference 
V

V

∆
= 0.44 %.

[235U
 
is the isotope needed for nuclear fission.

To separate it from the more abundant isotope
238U,  the mixture  is surrounded by a  porous
cylinder. The porous cylinder must be thick and
narrow, so that the molecule wanders through
individually, colliding with the walls of the long
pore. The faster molecule will leak out more than

Maxwell Distribution Function

In a given mass of gas, the velocities of all molecules are not the same, even when bulk
parameters like pressure, volume and temperature are fixed. Collisions change the direction
and the speed of molecules. However in a state of equilibrium, the distribution of speeds is
constant or fixed.

Distributions are very important and useful when dealing with systems containing large
number of  objects. As an example consider the ages of different persons in a city. It is not
feasible to deal with the age of each individual. We can divide the people into groups: children
up to age 20 years, adults between ages of 20 and 60, old people above 60. If we want more
detailed information we can choose smaller intervals, 0-1, 1-2,..., 99-100 of age groups. When
the size of the interval becomes smaller, say half year, the number of persons in the interval
will also reduce, roughly half the original number in the one  year interval. The number of
persons  dN(x)  in the age interval x and x+dx is proportional to dx or dN(x)  =   n

x
  dx.  We have

used n
x
 to denote the number of persons at the value of x.

Maxwell distribution of molecular speeds

In a similar way the molecular speed distribution gives the number of molecules between
the speeds v and v+ dv. dN(v)

 
= 4p N a3e–bv2 v2 dv = n

v
dv.  This is called Maxwell distribution.

The plot of n
v 
 against v is shown in the figure. The fraction of the molecules with speeds v and

v+dv is equal to the area of the strip shown. The average of any quantity like v2 is defined by
the integral <v2> = (1/N ) ∫ v2 dN(v)

   
= ªªªªª(3k

B
 T/m)

    
which  agrees with the result derived from

more elementary considerations.
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the slower one and so there is more of the lighter
molecule (enrichment) outside the porous
cylinder (Fig. 13.5). The method is not very
efficient and has to be repeated several times
for sufficient enrichment.]. t

When gases diffuse, their rate of diffusion is
inversely proportional to square root of the
masses (see Exercise 13.12 ). Can you guess the
explanation from the above answer?

Fig. 13.5  Molecules going through a porous wall.

Example 13.7  (a)  When a molecule (or
an elastic ball) hits a ( massive) wall, it
rebounds with the same speed. When a ball
hits a massive bat held firmly, the same
thing happens. However, when the bat is
moving towards the ball, the ball rebounds
with a different speed. Does the ball move
faster or slower? (Ch.6 will refresh your
memory on elastic collisions.)

(b) When gas in a cylinder is compressed
by pushing in a piston, its temperature
rises. Guess at an explanation of this in
terms of kinetic theory using (a) above.

(c) What happens when a compressed gas
pushes a piston out and expands. What
would you observe ?
(d) Sachin Tendulkar used a heavy cricket
bat while playing. Did it help him in
anyway ?

Answer  (a)  Let the speed of the ball be u  relative
to the wicket behind the bat. If the bat is moving
towards the ball with a speed V  relative to the
wicket, then the relative speed of the ball to bat

is V + u  towards the bat. When the ball rebounds
(after hitting the massive bat) its speed,  relative
to bat,  is V + u  moving away from the bat. So
relative to the wicket the speed of the rebounding
ball is V + (V + u) = 2V + u, moving away from
the wicket. So the ball speeds up after the
collision with the bat. The rebound speed will
be less than u if the bat is not massive. For a
molecule this would imply an increase in
temperature.

You  should be able to answer (b) (c) and (d)
based on the answer to (a).
(Hint: Note the correspondence, pistonà bat,

cylinder à wicket, molecule à ball.)         t

13.5  LAW OF EQUIPARTITION OF ENERGY

The kinetic energy of a single molecule is

2 2 21 1 1
      

2 2 2
t x y zmv mv mvε = + + (13.22)

For a gas in thermal equilibrium at
temperature T  the average value of energy

denoted by   < tε > is

2 2 21 1 1 3

2 2 2 2
t x y z Bmv mv mv k Tε = + + = (13.23)

Since there is no preferred direction, Eq. (13.23)
implies

21 1
    

2 2
x Bmv k T=  ,

21 1
    

2 2
y Bmv k T= ,

21 1
    

2 2
z Bmv k T= (13.24)

A molecule free to move in space needs three
coordinates to specify its location. If it is
constrained to move in a plane it needs two; and
if constrained to move along a line, it needs just
one coordinate to locate it. This can also be
expressed in another way. We say that it has
one degree of freedom for motion in a line, two
for motion in a plane and three for motion in
space. Motion of a body as a whole from one
point to another is called translation. Thus, a
molecule free to move in space has three
translational degrees of freedom. Each
translational degree of freedom contributes a
term that contains square of some variable of
motion, e.g., ½ mv

x
2  and similar terms in

v
y
 and v

z
. In, Eq. (13.24) we see that in thermal

equilibrium, the average of each such term is

½ k
B
T .
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Molecules of a monatomic gas like argon have
only translational degrees of freedom. But what
about a diatomic gas such as O

2
 or N

2
? A

molecule of O
2 
has three translational degrees

of freedom. But in addition it can also rotate
about its centre of mass. Figure 13.6 shows the
two independent axes of rotation 1 and 2, normal
to the axis joining the two oxygen atoms about
which the molecule can rotate*. The molecule
thus has two rotational degrees of freedom, each
of which contributes a term to the total energy
consisting of translational energy tε

 
and

rotational energy εr
.

2 2 2 2 2
1 1 2 2

1 1 1 1 1

2 2 2 2 2
t r x y zmv mv mv I Iε ε ω ω+ = + + + + (13.25)

Fig. 13.6 The two independent axes of rotation of a

diatomic molecule

where ω
1 
and ω

2 
 are the angular speeds about

the axes 1 and 2 and I
1
, I

2 
are the corresponding

moments of inertia. Note that each rotational
degree of freedom contributes a term to the
energy that contains square of a rotational
variable of motion.

We have assumed above that the O
2
 molecule

is a ‘rigid rotator’, i.e., the molecule does not
vibrate. This assumption, though found to be
true (at moderate temperatures) for O

2
, is not

always valid. Molecules, like CO, even at
moderate temperatures have a mode of vibration,
i.e., its atoms oscillate along the interatomic axis
like a one-dimensional oscillator, and contribute
a vibrational energy term ε

v
 to the total energy:

εv m
y

t
ky=







+

1

2

1

2

2

2d

d

t r vε ε ε= + + ε (13.26)

where k is the force constant of the oscillator
and y the vibrational co-ordinate.

Once again the vibrational energy terms in
Eq. (13.26) contain squared terms of vibrational
variables of motion y and dy/dt .

At this point, notice an important feature in

Eq.(13.26). While each translational and

rotational degree of freedom has contributed only

one ‘squared term’ in Eq.(13.26), one vibrational

mode contributes two ‘squared terms’ : kinetic

and potential energies.

Each quadratic term occurring in the

expression for energy is a mode of absorption of

energy by the molecule. We have seen that in

thermal equilibrium at absolute temperature T,

for each translational mode of motion, the

average energy is ½ k
B
T. The most elegant

principle of classical statistical mechanics (first

proved by Maxwell) states that this is so for each

mode of energy: translational, rotational and

vibrational. That is, in equilibrium, the total

energy is equally distributed in all possible

energy modes, with each mode having an average

energy equal to  ½ k
B
T. This is known as the law

of equipartition of energy. Accordingly, each

translational and rotational degree of freedom

of a molecule contributes ½ k
B
T  to the energy,

while each vibrational frequency contributes

2 × ½ k
B
T  = k

B
T ,  since a vibrational mode has

both kinetic and potential energy modes.

The proof of the law of equipartition of energy

is beyond the scope of this book. Here, we shall

apply the law to predict the specific heats of

gases theoretically. Later, we shall also discuss

briefly, the application to specific heat  of solids.

13.6  SPECIFIC HEAT CAPACITY

13.6.1 Monatomic Gases

The molecule of a monatomic gas has only three
translational degrees of freedom. Thus, the
average energy of a molecule at temperature
T is (3/2)k

B
T .  The total internal energy of a mole

of such a gas is

* Rotation along the line joining the atoms has very small moment of inertia and does not come into play for

quantum mechanical reasons. See end of section 13.6.
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3 3
 

2 2
B AU k T N RT= × = (13.27)

The molar specific heat at constant volume,
C

v
, is

 C
v
 (monatomic gas) = 

d

d

U

T
 =

3

2
RT (13.28)

For an ideal gas,
C

p
 – C

v
 = R (13.29)

where C
p
 is the molar specific heat at constant

pressure.  Thus,

C
p
 = 

5

2
 R    (13.30)

The ratio of specific heats p

v

5

3

C

C
γ = =    (13.31)

13.6.2 Diatomic Gases

As explained earlier, a diatomic molecule treated
as a rigid rotator, like a dumbbell, has 5 degrees
of freedom: 3 translational and 2 rotational.
Using the law of equipartition of energy, the total
internal energy of a mole of such a gas is

5 5

2 2
B AU k T N RT= × = (13.32)

The molar specific heats are then given by

C
v
 (rigid diatomic) = 

5

2
R, C

p
 = 

7

2
R (13.33)

γ (rigid diatomic) = 
7

5
(13.34)

If the diatomic molecule is not rigid but has
in addition a vibrational mode

U k T k T N  RTB B A= +










=
5

2

7

2

7 9 9
,  ,  

2 2 7
v pC R C R γ= = = R (13.35)

13.6.3 Polyatomic Gases

In general a polyatomic molecule has 3

translational, 3 rotational degrees of freedom

and a certain number ( f ) of vibrational modes.

According to the law of equipartition of energy,

it is easily seen that one mole of such a gas has

U = 
3

2




 k

B
T + 

3

2
 k

B
T + f k

B
T   N

A

i.e.,C
v
 = (3 + f ) R,  C

p
 = (4 + f ) R,

( )
( )

f

f
γ

4 +
=

3 +
(13.36)

Note that C
p
 – C

v
 = R is true for any ideal

gas, whether mono, di or polyatomic.

Table 13.1 summarises the theoretical

predictions for specific heats of gases ignoring

any vibrational modes of motion. The values are

in good agreement with experimental values of

specific heats of several gases given in Table 13.2.

Of course, there are discrepancies between

predicted and actual values of specific heats of

several other gases (not shown in the table), such

as Cl
2
, C

2
H

6
 and many other polyatomic gases.

Usually, the experimental values for specific

heats of these gases are greater than the

predicted values as given in Table13.1 suggesting

that the agreement can be improved by including

vibrational modes of motion in the calculation.

The  law of equipartition of energy is, thus, well

Nature of
Gas

C
v

(J mol-1
K-1

)

C
p

(J mol-1
K-1

)

C
p
- C

v

(J mol-1
K-1

)

g

Monatomic 12.5 20.8 8.31 1.67

Diatomic 20.8 29.1 8.31 1.40

Triatomic 24.93 33.24 8.31 1.33

Table 13.1 Predicted values of specific heat
capacities of gases (ignoring

vibrational modes)

Table13.2 Measured values of specific heat
capacities of some gases
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verified experimentally at ordinary

temperatures.

Example 13.8 A cylinder of fixed capacity
44.8 litres contains helium gas at standard
temperature and pressure. What is the
amount of heat needed to raise the
temperature of the gas in the cylinder by
15.0 °C ? (R = 8.31 J mo1–1 K–1).

Answer Using the gas law PV = µRT, you can
easily show that 1 mol of any (ideal) gas at
standard temperature (273 K) and pressure
(1 atm = 1.01 × 105 Pa) occupies a volume of
22.4 litres. This universal volume is called molar
volume. Thus the cylinder in this example
contains 2 mol of helium. Further, since helium
is monatomic, its predicted (and observed) molar
specific heat at constant volume, C

v
 = (3/2) R,

and molar specific heat at constant pressure,
C

p
 = (3/2) R + R = (5/2) R .  Since the volume of

the cylinder is fixed, the heat required is
determined by C

v
. Therefore,

Heat required = no. of moles × molar specific
heat × rise in temperature

= 2 × 1.5 R × 15.0 = 45 R

= 45 × 8.31 = 374 J. t

13.6.4   Specific Heat Capacity of Solids

We can use the law of equipartition of energy to
determine specific heats of solids. Consider a
solid of N atoms, each vibrating about its mean
position. An oscillation in one dimension has
average energy of   2 × ½ k

B
T = k

B
T . In three

dimensions, the average energy is 3 k
B
T. For a

mole of solid, N = N
A
, and the total

energy is

U =  3  k
B
T  × N

A
  = 3 RT

Now at constant pressure ∆Q = ∆U + P∆V

= ∆U,  since for a solid  ∆V is negligible. Hence,

 3
Q U

C R
T T

∆ ∆
= = =

∆ ∆
(13.37)

Table 13.3 Specific Heat Capacity of some
solids at room temperature and

atmospheric pressure

As Table 13.3 shows the prediction generally
agrees with experimental values at ordinary
temperature (Carbon is an exception).

13.6.5  Specific Heat Capacity of Water

We treat water like a solid. For each atom average
energy is 3k

B
T. Water molecule has three atoms,

two hydrogen and one oxygen. So it has

U = 3 × 3 k
B
T  × N

A
  = 9 RT

and C = ∆Q/ ∆T =∆ U / ∆T  = 9R .

This is the value observed and the agreement
is very good. In the calorie, gram, degree units,
water is defined to have unit specific heat. As  1
calorie = 4.179 joules and one mole of water
is 18 grams, the heat capacity per mole is
~ 75 J mol-1 K-1 ~  9R. However with more
complex  molecules like alcohol or acetone the
arguments, based on degrees of freedom, become
more complicated.

Lastly, we should note an important aspect

of the predictions of specific heats, based on the

classical law of equipartition of energy. The

predicted specific heats are independent of

temperature. As we go to low temperatures,

however, there is a marked departure from this

prediction. Specific heats of all substances

approach zero as T à0.  This is related to the

fact that degrees of freedom get frozen and

ineffective at low temperatures. According to

classical physics, degrees of freedom must

remain unchanged at all times. The behaviour

of  specific heats at low temperatures shows the

inadequacy of classical physics and can be

explained only by invoking quantum

considerations, as was first shown by Einstein.

Quantum mechanics requires a minimum,

non-zero amount of energy before a degree of

freedom comes into play. This is also the reason

why vibrational degrees of freedom come into play

only in some cases.

13.7  MEAN FREE PATH

Molecules in a gas have rather large speeds of
the order of the speed of sound. Yet a gas leaking
from a cylinder in a kitchen takes considerable
time to diffuse to the other corners of the room.
The top of a cloud of smoke holds together for
hours. This happens because molecules in a gas
have a finite though small size, so they are bound
to undergo collisions. As a result, they cannot
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d

d

v

move straight unhindered; their paths keep
getting incessantly deflected.

Fig. 13.7 The volume swept by a molecule in time ∆t

in which any molecule will collide with it.

Suppose the molecules of a gas are spheres
of diameter d. Focus on a single molecule with
the average speed <v>. It will suffer collision with
any molecule that comes within a distance d
between the centres. In time ∆t, it sweeps a
volume πd2 <v> ∆t wherein any other molecule

will collide with it (see Fig. 13.7). If n is the

number of molecules per unit volume, the

molecule suffers nπd2 <v> ∆t  collisions in time

∆t. Thus the rate of collisions is  nπd2 <v> or the

time between two successive collisions is on the

average,

τ  = 1/(nπ <v> d2 ) (13.38)

The average distance between two successive

collisions, called the mean free path l, is :

l  = <v> τ = 1/(nπd2) (13.39)

In this derivation, we imagined the other

molecules to be at rest. But actually all molecules

are moving and the collision rate is determined

by the average relative velocity of the molecules.

Thus we need to replace <v> by <v
r
> in Eq.

(13.38). A more exact treatment gives

( )21/ 2l n dπ= (13.40)

Let us estimate l and τ  for air molecules with
average speeds  <v> = ( 485m/s). At STP

n = 
( )
( )

×

×

23

–3

0.02 10

22.4 10

=  2.7 × 10 25 m -3.

Taking, d = 2 × 10–10 m,
τ = 6.1 × 10–10 s
and l = 2.9 × 10–7 m ≈ 1500d (13.41)

Seeing is Believing

Can one see atoms rushing about.  Almost but not quite.  One can see pollen grains of a flower being
pushed around by molecules of water. The size of the grain is ~ 10-5 m.  In 1827, a Scottish botanist
Robert Brown, while examining, under a microscope, pollen grains of a flower suspended in water
noticed that they continuously moved about in a zigzag, random fashion.

Kinetic theory provides a simple explanation of the phenomenon. Any object suspended in water is
continuously bombarded from all sides by the water molecules. Since the motion of molecules is random,
the number of molecules hitting the object in any direction is about the same as the number hitting in
the opposite direction. The small difference between these molecular hits is negligible compared to the
total number of hits for an object of ordinary size, and we do not notice any movement of the object.

When the object is sufficiently small but still visible under a microscope, the difference in molecular
hits from different directions is not altogether negligible, i.e. the impulses and the torques given to the
suspended object through continuous bombardment by the molecules of the medium (water or some
other fluid) do not exactly sum to zero. There is a net impulse and torque in this or that direction. The
suspended object thus, moves about in a zigzag manner and tumbles about randomly.  This motion
called now ‘Brownian motion’ is a visible proof of molecular activity. In the last 50 years or so  molecules
have been seen by scanning tunneling and other special microscopes.

In 1987 Ahmed Zewail, an Egyptian scientist working in USA was able to observe not only the
molecules but also their detailed interactions. He did this by illuminating them with flashes of laser
light for very short durations, of the order of tens of femtoseconds and photographing them.  ( 1 femto-
second = 10-15 s ). One could study even the formation and breaking of chemical bonds. That is really
seeing !
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As expected, the mean free path given by
Eq. (13.40) depends inversely on the number
density and the size of the molecules. In a highly
evacuated tube n is rather small and the mean
free path can be as large as the length of the
tube.

Example 13.9 Estimate the mean free path
for a water molecule in water vapour at 373 K.
Use information from Exercises 13.1 and
Eq. (13.41) above.

Answer The d for water vapour is same as that
of air. The number density is inversely
proportional to absolute temperature.

So 
25 25 –3273

2.7 10 2 10 m
373

n = × × = ×

Hence, mean free path –74 10 ml = × t

Note that the mean free path is 100 times the
interatomic distance ~ 40 Å = 4 ×10-9 m calculated
earlier. It is this large value of mean free path that
leads to the typical gaseous behaviour. Gases can
not be confined without a container.

Using, the kinetic theory of gases, the bulk
measurable properties like viscosity, heat
conductivity and diffusion can be related to the
microscopic parameters like molecular size. It
is through such relations that the molecular
sizes were first estimated.

SUMMARY

1. The ideal gas equation connecting pressure (P ), volume (V ) and absolute temperature
(T ) is

                                         PV = µ RT     = k
B
 NT

where µ is the number of moles and N is the number of molecules. R and k
B
 are universal

constants.

R = 8.314 J mol–1 K–1,     k
B
  = 

A

R

N  
  = 1.38 × 10–23 J K–1

Real gases satisfy the ideal gas equation only approximately, more so at low pressures
and high temperatures.

2. Kinetic theory of an ideal gas gives the relation

                                        
21

3
P   n m v=

where n is number density of molecules, m the mass of the molecule and 2v    is the

mean of squared speed. Combined with the ideal gas equation it yields a kinetic
interpretation of temperature.

21 3

2 2
B m v    k  T= ,  ( )

1/2
2 rmsv v=

3 Bk T

m
=

This tells us that  the temperature of a gas is a measure of the average kinetic energy
of a molecule, independent of the nature of the gas or molecule. In a mixture of gases at
a fixed temperature the heavier molecule has the lower average speed.

3. The translational kinetic energy

E = 

2

3
 k

B 
NT.

This leads to a relation

PV = 
2

3
 E

4. The law of equipartition of energy states that if a system is in equilibrium at absolute
temperature T, the total energy is distributed equally in different energy modes of
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absorption, the energy in each mode being equal to ½ k
B
 T. Each translational and

rotational degree of freedom corresponds to one energy mode of absorption and has
energy ½ k

B
 T. Each vibrational frequency has two modes of energy (kinetic and potential)

with corresponding energy equal to
2 × ½ k

B
 T = k

B
 T.

5. Using the law of equipartition of energy, the molar specific heats of gases can be
determined and the values are in agreement with the experimental values of specific
heats of several gases. The agreement can be improved by including vibrational modes
of motion.

6. The mean free path l is the average distance covered by a molecule between two successive
collisions :

2

1

2 π
 = l

 n  d

where n is the number density and d the diameter of the molecule.

POINTS TO PONDER
1. Pressure of a fluid is not only exerted on the wall. Pressure exists everywhere in a fluid.

Any layer of gas inside the volume of a container is in equilibrium because the pressure
is the same on both sides of the layer.

2. We should not have an exaggerated idea of the intermolecular distance in a gas. At
ordinary pressures and temperatures, this is only 10 times or so the interatomic distance
in solids and liquids. What is different is the mean free path which in a gas is 100
times the interatomic distance and 1000 times the size of the molecule.

3. The law of equipartition of energy is stated thus: the energy for each degree of freedom
in thermal equilibrium is ½ k

B
 T. Each quadratic term in the total energy expression of

a molecule is to be counted as a degree of freedom. Thus, each vibrational mode gives
2 (not 1) degrees of freedom (kinetic and potential energy modes), corresponding to the
energy 2 × ½ k

B
 T = k

B
 T.

4. Molecules of air in a room do not all fall and settle on the ground (due to gravity)
because of their high speeds and incessant collisions. In equilibrium, there is a very
slight increase in density at lower heights (like in the atmosphere). The effect is small
since the potential energy (mgh) for ordinary heights is much less than the average
kinetic energy ½ mv2 of the molecules.

5. < v2 >  is not always equal to ( < v >)2. The average of a squared quantity is not necessarily

the square of the average. Can you find examples for this statement.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

13.113.113.113.113.1 Estimate the fraction of molecular volume to the actual volume occupied by oxygen
gas at STP. Take the diameter of an oxygen molecule to be 3 Å.

13.213.213.213.213.2 Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard
temperature and pressure (STP : 1 atmospheric pressure, 0 °C). Show that it is 22.4
litres.

13.313.313.313.313.3 Figure 13.8 shows plot of PV/T  versus P for 1.00×10–3 kg of oxygen gas at two
different temperatures.
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Fig. 13.8Fig. 13.8Fig. 13.8Fig. 13.8Fig. 13.8

(a) What does the dotted plot signify?
(b) Which is true: T

1
 > T

2
 or T

1
 < T

2
?

(c) What is the value of PV/T where the curves meet on the y-axis?
(d) If we obtained similar plots for 1.00×10–3 kg of hydrogen, would we get the same

value of PV/T  at the point where the curves meet on the y-axis? If not, what mass
of hydrogen yields the same value of PV/T  (for low pressure high temperature
region of the plot) ? (Molecular mass of H

2
 = 2.02 u, of O

2
 = 32.0 u,

R = 8.31 J mo1–1 K–1.)

13.413.413.413.413.4 An oxygen cylinder of volume 30 litres has an initial gauge pressure of 15 atm and
a temperature of 27 °C. After some oxygen is withdrawn from the cylinder, the gauge
pressure drops to 11 atm and its temperature drops to 17 °C. Estimate the mass of
oxygen taken out of the cylinder (R = 8.31 J mol–1 K–1, molecular mass of O

2
 = 32 u).

13.513.513.513.513.5 An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a
temperature of 12 °C. To what volume does it grow when it reaches the surface,
which is at a temperature of 35 °C ?

13.613.613.613.613.6 Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water
vapour and other constituents) in a room of capacity 25.0 m3 at a temperature of
27 °C and 1 atm pressure.

13.713.713.713.713.7 Estimate the average thermal energy of a helium atom at (i) room temperature
(27 °C), (ii) the temperature on the surface of the Sun (6000 K), (iii) the temperature
of 10 million kelvin (the typical core temperature in the case of a star).

13.813.813.813.813.8 Three vessels of equal capacity have gases at the same temperature and pressure.
The first vessel contains neon (monatomic), the second contains chlorine (diatomic),
and the third contains uranium hexafluoride (polyatomic). Do the vessels contain
equal number of respective molecules ? Is the root mean square speed of molecules
the same in the three cases? If not, in which case is v

rms
 the largest ?

13.913.913.913.913.9 At what temperature is the root mean square speed of an atom in an argon gas
cylinder equal to the rms speed of a helium gas atom at – 20 °C ? (atomic mass of Ar
= 39.9 u, of He = 4.0 u).

13.1013.1013.1013.1013.10 Estimate the mean free path and collision frequency of a nitrogen molecule in a
cylinder containing nitrogen at 2.0 atm and temperature 17 0C. Take the radius of a
nitrogen molecule to be roughly 1.0 Å. Compare the collision time with the time the
molecule moves freely between two successive collisions (Molecular mass of N

2
 =

28.0 u).

PV

T
(J K   )

–1

P

T
1

T2

x

y
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Additional ExercisesAdditional ExercisesAdditional ExercisesAdditional ExercisesAdditional Exercises

13.1113.1113.1113.1113.11 A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm
long mercury thread, which traps a 15 cm column of air. What happens if the tube
is held vertically with the open end at the bottom ?

13.1213.1213.1213.1213.12 From a certain apparatus, the diffusion rate of hydrogen has an average value of
28.7 cm3 s–1. The diffusion of another gas under the same conditions is measured to
have an average rate of 7.2 cm3 s–1. Identify the gas.
[Hint : Use Graham’s law of diffusion: R

1
/R

2
 = ( M

2
 /M

1
 )1/2, where R

1
, R

2
 are diffusion

rates of gases 1 and 2, and M
1 
and M

2 
their respective molecular masses. The law is

a simple consequence of kinetic theory.]

13.1313.1313.1313.1313.13 A gas in equilibrium has uniform density and pressure throughout its volume. This
is strictly true only if there are no external influences. A gas column under gravity,
for example, does not have uniform density (and pressure). As you might expect, its
density decreases with height. The precise dependence is given by the so-called law
of atmospheres

                                   n
2
 = n

1
 exp [ -mg (h

2
 – h

1
)/ k

B
T ]

where n
2
, n

1
 refer to number density at heights h

2
 and h

1
 respectively. Use this

relation to derive the equation for sedimentation equilibrium of a suspension in a
liquid column:

n
2
  = n

1
 exp [ -mg N

A
 (ρ - ρ′ ) (h

2
 –h

1
)/ (ρ RT)]

where ρ is the density of the suspended particle, and ρ′ , that of surrounding medium.

[N
A
 is Avogadro’s number, and R the universal gas constant.] [Hint : Use Archimedes

principle to find the apparent weight of the suspended particle.]

13.1413.1413.1413.1413.14 Given below are densities of some solids and liquids. Give rough estimates of the
size of their atoms :

[Hint : Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the
known value of Avogadro’s number. You should, however, not take the actual numbers
you obtain for various atomic sizes too literally. Because of the crudeness of the
tight packing approximation, the results only indicate that atomic sizes are in the
range of a few Å].

Substance Atomic Mass  (u) Density  (103 Kg m-3)

Carbon (diamond) 12.01 2.22
Gold 197.00 19.32
Nitrogen (liquid) 14.01 1.00
Lithium 6.94 0.53
Fluorine (liquid) 19.00 1.14
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CHAPTER FOURTEEN

OSCILLATIONS

14.1 INTRODUCTION

In our daily life we come across various kinds of motions.

You have already learnt about some of them, e.g., rectilinear

motion and motion of a projectile. Both these motions are

non-repetitive. We have also learnt about uniform circular

motion and orbital motion of planets in the solar system. In

these cases, the motion is repeated after a certain interval of

time, that is, it is periodic. In your childhood, you must have

enjoyed rocking in a cradle or swinging on a swing. Both

these motions are repetitive in nature but different from the

periodic motion of a planet. Here, the object moves to and fro

about a mean position. The pendulum of a wall clock executes

a similar motion. Examples of such periodic to and fro

motion abound: a boat tossing up and down in a river, the

piston in a steam engine going back and forth, etc. Such a

motion is termed as oscillatory motion. In this chapter we

study this motion.

The study of oscillatory motion is basic to physics; its

concepts are required for the understanding of many physical

phenomena. In musical instruments, like the sitar, the guitar

or the violin, we come across vibrating strings that produce

pleasing sounds. The membranes in drums and diaphragms

in telephone and speaker systems vibrate to and fro about

their mean positions. The vibrations of air molecules make

the propagation of sound possible. In a solid, the atoms vibrate

about their equilibrium positions, the average energy of

vibrations being proportional to temperature. AC power

supply give voltage that oscillates alternately going positive

and negative about the mean value (zero).

The description of a periodic motion, in general, and

oscillatory motion, in particular, requires some fundamental

concepts, like period, frequency, displacement, amplitude

and phase. These concepts are developed in the next section.

14.1 Introduction

14.2 Periodic and oscillatory

motions

14.3 Simple harmonic motion

14.4 Simple harmonic motion

and uniform circular
motion

14.5 Velocity and acceleration

in simple harmonic motion

14.6 Force law for simple

harmonic motion

14.7 Energy in simple harmonic

motion

14.8 Some systems executing

simple harmonic motion

14.9 Damped simple harmonic

motion

14.10 Forced oscillations and

resonance

Summary

Points to ponder

Exercises

Additional Exercises
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14.2 PERIODIC AND OSCILLATORY MOTIONS

Fig. 14.1 shows some periodic motions. Suppose
an insect climbs up a ramp and falls down, it
comes back to the initial point and repeats the
process identically. If you draw a graph of its
height above the ground versus time, it would
look something like Fig. 14.1 (a). If a child climbs
up a step, comes down, and repeats the process
identically, its height above the ground would
look like that in Fig. 14.1 (b). When you play the
game of bouncing a ball off the ground, between
your palm and the ground, its height versus time
graph would look like the one in Fig. 14.1 (c).
Note that both the curved parts in Fig. 14.1 (c)
are sections of a parabola given by the Newton’s
equation of motion (see section 3.6),

21

2
 + gth = ut  for downward motion, and

21

2
 – gth = ut  for upward motion,

with different values of u in each case. These
are examples of periodic motion. Thus, a motion
that repeats itself at regular intervals of time is
called periodic motion.

Fig. 14.1 Examples of periodic motion. The period T

is shown in each case.

Very often, the body undergoing periodic
motion has an equilibrium position somewhere
inside its path. When the body is at this position
no net external force acts on it. Therefore, if it is
left there at rest, it remains there forever. If the
body is given a small displacement from the
position, a force comes into play which tries to
bring the body back to the equilibrium point,
giving rise to oscillations or vibrations. For
example, a ball placed in a bowl will be in
equilibrium at the bottom. If displaced a little
from the point, it will perform oscillations in the
bowl. Every oscillatory motion is periodic, but
every periodic motion need not be oscillatory.
Circular motion is a periodic motion, but it is
not oscillatory.

There is no significant difference between
oscillations and vibrations. It seems that when
the frequency is small, we call it oscillation (like,
the oscillation of a branch of a tree), while when
the frequency is high, we call it vibration (like,
the vibration of a string of a musical instrument).

Simple harmonic motion is the simplest form
of oscillatory motion. This motion arises when
the force on the oscillating body is directly
proportional to its displacement from the mean
position, which is also the equilibrium position.
Further, at any point in its oscillation, this force
is directed towards the mean position.

In practice, oscillating bodies eventually
come to rest at their equilibrium positions
because of the damping due to friction and other
dissipative causes.  However, they can be forced
to remain oscillating by means of some external
periodic agency.  We discuss the phenomena of
damped and forced oscillations later in the
chapter.

Any material medium can be pictured as a
collection of a large number of coupled
oscillators. The collective oscillations of the
constituents of a medium manifest themselves
as waves. Examples of waves include water
waves, seismic waves, electromagnetic waves.
We shall study the wave phenomenon in the next
chapter.

14.2.1 Period and frequency

We have seen that any motion that repeats itself
at regular intervals of time is called periodic
motion. The smallest interval of time after
which the motion is repeated is called its
period. Let us denote the period by the symbol
T. Its SI unit is second. For periodic motions,

(a)

(b)

(c)
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which are either too fast or too slow on the scale
of seconds, other convenient units of time are
used. The period of vibrations of a quartz crystal
is expressed in units of microseconds (10–6 s)
abbreviated as µs. On the other hand, the orbital
period of the planet Mercury is 88 earth days.
The Halley’s comet appears after every 76 years.

The reciprocal of T gives the number of
repetitions that occur per unit time. This
quantity is called the frequency of the periodic
motion. It is represented by the symbol ν. The
relation between ν and T is

ν  = 1/T  (14.1)

The unit of ν is thus s–1. After the discoverer of
radio waves, Heinrich Rudolph Hertz (1857–1894),
a special name has been given to the unit of
frequency. It is called hertz (abbreviated as Hz).
Thus,

1 hertz  = 1 Hz =1 oscillation per second =1s–1

 (14.2)

Note, that the frequency, ν, is not necessarily
an integer.

u Example 14.1  On an average, a human
heart is found to beat 75 times in a minute.
Calculate its frequency and period.

Answer The beat frequency of heart = 75/(1 min)
     = 75/(60 s)

                                                    = 1.25 s–1

                                                    = 1.25 Hz
             The time period T         = 1/(1.25 s–1)
                                                    = 0.8 s t

14.2.2   Displacement
In section 4.2, we defined displacement of a
particle as the change in its position vector. In

this chapter, we use the term displacement

in a more general sense. It refers to change

with time of any physical property under

consideration. For example, in case of rectilinear
motion of a steel ball on a surface, the distance

from the starting point as a function of time is

its position displacement. The choice of origin

is a matter of convenience. Consider a block

attached to a spring, the other end of the spring

is fixed to a rigid wall [see Fig.14.2(a)]. Generally,
it is convenient to measure displacement of the

body from its equilibrium position. For an

oscillating simple pendulum, the angle from the
vertical as a function of time may be regarded

as a displacement variable [see Fig.14.2(b)]. The
term displacement is not always to be referred

Fig. 14.2(a) A block attached to a spring, the other

end of which is fixed to a rigid wall. The

block moves on a frictionless surface. The

motion of the block can be described in

terms of its distance or displacement x

from the equilibrium position.

Fig.14.2(b) An oscillating simple pendulum; its

motion can be described in terms of

angular displacement θ from the vertical.

in the context of position only. There can be
many other kinds of displacement variables. The
voltage across a capacitor, changing with time
in an AC circuit, is also a displacement variable.
In the same way, pressure variations in time in
the propagation of sound wave, the changing
electric and magnetic fields in a light wave are
examples of displacement in different contexts.
The displacement variable may take both
positive and negative values. In experiments on
oscillations, the displacement is measured for
different times.

The displacement can be represented by a
mathematical function of time. In case of periodic
motion, this function is periodic in time. One of
the simplest periodic functions is given by

    f (t) = A cos ωt                           (14.3a)

If the argument of this function, ωt, is
increased by an integral multiple of 2π radians,
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the value of the function remains the same. The
function f (t ) is then periodic and its period, T,
is given by

    
ω

π2
=  T     (14.3b)

Thus, the function f (t) is periodic with period T,

f (t) = f (t+T )

The same result is obviously correct if we
consider a sine function, f (t ) = A sin ωt. Further,
a linear combination of sine and cosine functions
like,

       f (t )  =  A sin ωt + B cos ωt                 (14.3c)
is also a periodic function with the same period
T. Taking,

A = D cos φ  and  B = D sin φ

Eq. (14.3c) can be written as,

f (t) = D sin (ωt + φ ) ,                        (14.3d)

Here D and φ are constant given by

2 2 1and tanφ =  –D = A + B    
B

A







The great importance of periodic sine and
cosine functions is due to a remarkable result
proved by the French mathematician, Jean
Baptiste Joseph Fourier (1768–1830): Any
periodic function can be expressed as a
superposition of sine and cosine functions
of different time periods with suitable
coefficients.

u Example 14.2   Which of the following
functions of time represent (a) periodic and
(b) non-periodic motion? Give the period for
each case of periodic motion [ω is any
positive constant].
(i) sin ωt + cos ωt

(ii) sin ωt + cos 2 ωt + sin 4 ωt

(iii) e–ωt

(iv) log (ωt)

Answer

(i) sin ωt + cos ωt is a periodic function, it can

also be written as 2  sin (ωt + π/4).

Now 2  sin (ωt + π/4)= 2  sin (ωt + π/4+2π)

       = 2  sin [ω (t + 2π/ω) + π/4]

The periodic time of the function is 2π/ω.

(ii) This is an example of a periodic motion. It
can be noted that each term represents a
periodic function with a different angular
frequency. Since period is the least interval
of time after which a function repeats its
value, sin ωt has a period T

0
= 2π/ω ; cos 2 ωt

has a period π/ω =T
0
/2; and sin 4 ωt has a

period 2π/4ω = T
0
/4. The period of the first

term is a multiple of the periods of the last
two terms. Therefore, the smallest interval
of time after which the sum of the three
terms repeats is T

0
, and thus, the sum is a

periodic function with a period 2π/ω.

(iii) The function e–ωt is not periodic, it
decreases monotonically with increasing
time and tends to zero as t → ∞ and thus,
never repeats its value.

(iv) The function log (ωt ) increases
monotonically with time t. It, therefore,
never repeats its value and is a non-
periodic function. It may be noted that as
t → ∞, log(ωt) diverges to ∞. It, therefore,
cannot represent any kind of physical
displacement.               t

14.3 SIMPLE HARMONIC MOTION

Consider a particle oscillating back and forth
about the origin of an x-axis between the limits
+A and –A as shown in Fig. 14.3. This oscillatory
motion is said to be simple harmonic if the

Fig. 14.3 A particle vibrating back and forth about

the origin of x-axis, between the limits +A

and –A.

displacement x of the particle from the origin
varies with time as :

x (t) = A cos (ω t + φ ) (14.4)
where A, ω and φ are constants.

Thus, simple harmonic motion (SHM) is not
any periodic motion but one in which
displacement is a sinusoidal function of time.
Fig. 14.4 shows the positions of a particle
executing SHM at discrete value of time, each
interval of time being T/4, where T is the period

2020-21



OSCILLATIONS 345

of motion. Fig. 14.5 plots the graph of x versus t,
which gives the values of displacement as a
continuous function of time. The quantities A,
ω and φ which characterize a given SHM have
standard names, as summarised in Fig. 14.6.
Let us understand these quantities.

The amplitutde A of SHM is the magnitude
of maximum displacement of the particle.
[Note, A can be taken to be positive without
any loss of generality]. As the cosine function
of time varies from +1 to –1, the displacement
varies between the extremes A and – A. Two
simple harmonic motions may have same ω
and φ but different amplitudes A and B, as
shown in Fig. 14.7 (a).

Fig. 14.4 The location of the particle in SHM at the

discrete values t = 0, T/4, T/2, 3T/4, T,

5T/4. The time after which motion repeats

itself is T. T will remain fixed, no matter

what location you choose as the initial (t =

0) location. The speed is maximum for zero

displacement (at x = 0) and zero at the

extremes of motion.

Fig. 14.5 Displacement as a continuous function of

time for simple harmonic motion.

Fig. 14.7 (b) A plot obtained from Eq. (14.4). The

curves 3 and 4 are for φ = 0 and -π/4

respectively. The amplitude A is same for

both the plots.

Fig. 14.7 (a) A plot of displacement as a function of

time as obtained from Eq. (14.4) with

φ = 0. The curves 1 and 2 are for two

different amplitudes A and B.

x (t) : displacement x as a function of time t
A : amplitude
ω : angular frequency
ωt + φ : phase (time-dependent)
φ : phase constant

Fig. 14.6  The meaning of standard symbols

in Eq. (14.4)

While the amplitude A is fixed for a given
SHM, the state of motion (position and velocity)
of the particle at any time t is determined by the
argument (ωt + φ) in the cosine function. This
time-dependent quantity, (ωt + φ) is called the
phase of the motion. The value of plase at t = 0
is φ and is called the phase constant (or phase

angle). If the amplitude is known, φ can be
determined from the displacement at t = 0. Two
simple harmonic motions may have the same A
and ω but different phase angle φ, as shown in
Fig. 14.7 (b).
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Finally, the quantity ω can be seen to be
related to the period of motion T. Taking, for
simplicity, φ = 0 in Eq. (14.4), we have

x(t ) = A cos ωt   (14.5)

Since the motion has a period T, x (t) is equal to
x (t + T ). That is,

A cos ωt = A cos ω (t + T )      (14.6)

Now the cosine function is periodic with period
2π, i.e., it first repeats itself when the argument
changes by 2π. Therefore,

ω(t + T ) = ωt + 2π

that is ω = 2π/ T (14.7)

ω is called the angular frequency of SHM. Its
S.I. unit is radians per second. Since the
frequency of oscillations is simply 1/T, ω is 2π
times the frequency of oscillation. Two simple
harmonic motions may have the same A and φ,
but different ω, as seen in Fig. 14.8. In this plot
the curve (b) has half the period and twice the
frequency of the curve (a).

This function represents a simple harmonic
motion having a period T = 2π/ω and a
phase angle (–π/4) or (7π/4)

(b) sin2 ωt

= ½ – ½ cos 2 ωt

The function is periodic having a period
T = π/ω. It also represents a harmonic
motion with the point of equilibrium

occurring at ½ instead of zero.                      t

14.4  SIMPLE HARMONIC MOTION AND
UNIFORM CIRCULAR MOTION

In this section, we show that the projection of
uniform circular motion on a diameter of the
circle follows simple harmonic motion. A
simple experiment (Fig. 14.9) helps us visualise
this connection. Tie a ball to the end of a string
and make it move in a horizontal plane about
a fixed point with a constant angular speed.
The ball would then perform a uniform circular
motion in the horizontal plane. Observe the
ball sideways or from the front, fixing your
attention in the plane of motion. The ball will
appear to execute to and fro motion along a
horizontal line with the point of rotation as
the midpoint. You could alternatively observe
the shadow of the ball on a wall which is
perpendicular to the plane of the circle. In this
process what we are observing is the motion
of the ball on a diameter of the circle normal
to the direction of viewing.

Fig. 14.9 Circular motion of a ball in a plane viewed
edge-on is SHM.

Fig. 14.8   Plots of Eq. (14.4) for φ  = 0 for two different

periods.

u Example 14.3  Which of the following
functions of time represent (a) simple
harmonic motion and (b) periodic but not
simple harmonic? Give the period for each
case.
(1) sin ωt – cos ωt
(2) sin2 ωt

Answer
(a) sin ωt – cos ωt

= sin ωt – sin (π/2 – ωt)

= 2 cos (π/4)  sin (ωt – π/4)

                   = √2 sin (ωt – π/4)

Fig. 14.10 describes the same situation
mathematically. Suppose a particle P is moving
uniformly on a circle of radius A with angular
speed ω. The sense of rotation is anticlockwise.
The initial position vector of the particle, i.e.,

the vector OP  at t = 0 makes an angle of φ with

the positive direction of x-axis. In time t, it will
cover a further angle ωt and its position vector
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will make an angle of ωt + φ with the +ve
x-axis. Next, consider the projection of the
position vector OP on the x-axis. This will be
OP′. The position of P′ on the x-axis, as the
particle P moves on the circle, is given by

x(t ) =  A cos (ωt + φ )

which is the defining equation of SHM. This
shows that if P moves uniformly on a circle,
its projection P′ on a diameter of the circle
executes SHM. The particle P and the circle
on which it moves are sometimes referred to
as the reference particle and the reference circle,
respectively.

We can take projection of the motion of P on
any diameter, say the y-axis. In that case, the
displacement y(t) of P′ on the y-axis is given by

y = A sin (ωt + φ )

which is also an SHM of the same amplitude
as that of the projection on x-axis, but differing
by a phase of π/2.

In spite of this connection between circular

motion and SHM, the force acting on a particle

in linear simple harmonic motion is very

different from the centripetal force needed to

keep a particle in uniform circular motion.

u Example 14.4   The figure given below
depicts two circular motions. The radius
of the circle, the period of revolution, the
initial position and the sense of revolution
are indicated in the figures. Obtain the
simple harmonic motions of the
x-projection of the radius vector of the
rotating particle P in each case.

Answer

(a) At t = 0, OP makes an angle of 45o = π/4 rad
with the (positive direction of ) x-axis. After

time t, it covers an angle t
T

π2  in the

anticlockwise sense, and makes an angle

of 
 

4
 + 

2 ππ
t

T
  with the x-axis.

The projection of OP on the x-axis at time t
is given by,

x (t) = A cos 
2

 + 
4

π π

T
t







For T = 4 s,

x(t) = A cos  
2

4
 + 

4

π π
t







which is a SHM of amplitude A, period 4 s,

and an initial phase* = 
4

π
 
.

* The natural unit of angle is radian, defined through the ratio of arc to radius. Angle is a dimensionless

quantity. Therefore it is not always necessary to mention the unit ‘radian’ when we use π, its multiples

or submultiples. The conversion between radian and degree is not similar to that between metre and

centimetre or mile. If the argument of a trigonometric function is stated without units, it is understood

that the unit is radian. On the other hand, if degree is to be used as the unit of angle, then it must be

shown explicitly. For example, sin(150) means sine of 15 degree, but sin(15) means sine of 15 radians.

Hereafter, we will often drop ‘rad’ as the unit, and it should be understood that whenever angle is

mentioned as a numerical value, without units, it is to be taken as radians.

Fig. 14.10
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(b) In this case at t = 0, OP makes an angle of

90o = 
2

π  with the x-axis. After a time t, it

covers an angle of 2
t

T

π  in the clockwise

sense and makes an angle of  
π π

2
  

2
−





T

t

with the x-axis. The projection of OP on the
x-axis at time t is given by

x(t) = B cos 
π π

2
  

2
−





T

t

= B sin 
2π

T
t








For T = 30 s,

           x(t) = B sin 
π

15
t








Writing this as x (t ) = B cos 
π π

15
  

2
t −







, and

comparing with Eq. (14.4).  We find that this

represents a SHM of amplitude B, period 30 s,

and an initial phase of 
2

π
− . t

14.5 VELOCITY AND ACCELERATION IN
SIMPLE HARMONIC MOTION

The speed of a particle v in uniform circular

motion is its angular speed ω times the radius

of the circle A.

v = ω A      (14.8)

The direction of velocity v at a time t is along

the tangent to the circle at the point where the
particle is located at that instant. From the
geometry of Fig. 14.11, it is clear that the velocity
of the projection particle P′ at time t is

v(t ) = –ωA sin (ωt + φ )              (14.9)

where the negative sign shows that v (t) has a
direction opposite to the positive direction of
x-axis. Eq. (14.9) gives the instantaneous
velocity of a particle executing SHM, where
displacement is given by Eq. (14.4). We can, of
course, obtain this equation without using
geometrical argument, directly by differentiating
(Eq. 14.4) with respect of t:

d
( )

d
v(t) = x t

t
(14.10)

The method of reference circle can be similarly
used for obtaining instantaneous acceleration
of a particle undergoing SHM. We know that the
centripetal acceleration of a particle P in uniform
circular motion has a magnitude v2/A or ω2A,
and it is directed towards the centre i.e., the
direction is along PO. The instantaneous
acceleration of the projection particle P′ is then
(See Fig. 14.12)

a (t)  = –ω2A cos (ωt + φ)

               = –ω2x (t) (14.11)

Fig. 14.11 The velocity, v (t), of the particle P′ is the

projection of the velocity v  of the

reference particle, P.

Fig. 14.12 The acceleration, a(t), of the particle P′ is
the projection of the acceleration a of the

reference particle P.

Eq. (14.11) gives the acceleration of a particle
in SHM. The same equation can again be
obtained directly by differentiating velocity v(t)
given by Eq. (14.9) with respect to time:

d
( ) ( )

d
a t  = v t

t
(14.12)

We note from Eq. (14.11) the important
property that acceleration of a particle in SHM
is proportional to displacement. For x(t) > 0,
a(t) < 0 and for  x(t) < 0, a(t) > 0. Thus, whatever
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the value of x between –A and A, the acceleration
a(t) is always directed towards the centre.
For simplicity, let us put φ = 0 and write the
expression for x (t), v (t) and a(t)
x(t) = A cos ωt, v(t) = – ω Asin ωt, a(t)=–ω2 A cos ωt

The corresponding plots are shown in Fig. 14.13.
All quantities vary sinusoidally with time; only
their maxima differ and the different plots differ
in phase. x varies between –A to A; v(t) varies
from –ωA to ωA and a(t) from –ω2A to ω2A. With
respect to displacement plot, velocity plot has a
phase difference of π/2 and acceleration plot
has a phase difference of π.

(b) Using Eq. (14.9), the speed of the body
= – (5.0 m)(2π s–1) sin [(2π s–1) ×1.5 s
+ π/4]
= – (5.0 m)(2π s–1) sin [(3π + π/4)]

       = 10π × 0.707 m s–1

       = 22 m s–1

(c) Using Eq.(14.10), the acceleration of the
body

= –(2π s–1)2 × displacement
           = – (2π s–1)2 × (–3.535 m)
           = 140 m s–2 t

14.6 FORCE LAW FOR SIMPLE HARMONIC
MOTION

Using Newton’s second law of motion, and the
expression for acceleration of a particle
undergoing SHM (Eq. 14.11), the force acting
on a particle of mass m in SHM is

F (t )  = ma

    = –mω2 x (t )

i.e., F (t )  = –k x (t ) (14.13)

where  k = mω2 (14.14a)

or ω =  
k

m
(14.14b)

Like acceleration, force is always directed
towards the mean position—hence it is sometimes
called the restoring force in SHM. To summarise
the discussion so far, simple harmonic motion can
be defined in two equivalent ways, either by Eq.
(14.4) for displacement or by Eq. (14.13) that gives
its force law. Going from Eq. (14.4) to Eq. (14.13)
required us to differentiate two times. Likewise,
by integrating the force law Eq. (14.13) two times,
we can get back Eq. (14.4).

Note that the force in Eq. (14.13) is linearly
proportional to x(t). A particle oscillating under
such a force is, therefore, calling a linear
harmonic oscillator. In the real world, the force
may contain small additional terms proportional
to x2, x3, etc. These then are called non-linear
oscillators.

u Example 14.6 Two identical springs of
spring constant k are attached to a block
of mass m and to fixed supports as shown
in Fig. 14.14. Show that when the mass is
displaced from its equilibrium position on
either side, it executes a simple harmonic
motion. Find the period of oscillations.

Fig. 14.13 Displacement, velocity and acceleration of

a particle in simple harmonic motion have

the same period T, but they differ in phase

u Example 14.5  A body oscillates with SHM
according to the equation (in SI units),

     x = 5 cos [2π t + π/4].

At t = 1.5 s, calculate the (a) displacement,
(b) speed and (c) acceleration of the body.

Answer The angular frequency ω of the body
= 2π s–1 and its time period T = 1 s.
At t = 1.5 s
(a) displacement = (5.0 m) cos [(2π s–1) ×

1.5 s + π/4]
= (5.0 m) cos [(3π + π/4)]
= –5.0 × 0.707 m
= –3.535 m
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Fig. 14.14

Answer Let the mass be displaced by a small
distance x to the right side of the equilibrium
position, as shown in Fig. 14.15. Under this

situation the spring on the left side gets

Fig. 14.15

elongated by a length equal to x and that on

the right side gets compressed by the same

length. The forces acting on the mass are

then,

F
1
   = –k x (force exerted by the spring on

the left side, trying to pull the

mass towards the mean

position)

F
2 
  =

  
–k x (force exerted by the spring on

the right side, trying to push the

mass towards the mean

position)

The net force, F, acting on the mass is then

given by,

F   = –2kx

Hence the force acting on the mass is

proportional to the displacement and is directed

towards the mean position; therefore, the motion

executed by the mass is simple harmonic. The

time period of oscillations is,

T = 2  
m

2k
π t

14.7 ENERGY IN SIMPLE HARMONIC
MOTION

Both kinetic and potential energies of a particle

in SHM vary between zero and their maximum

values.

In section14.5 we have seen that the velocity

of a particle executing SHM, is a periodic

function of time. It is zero at the extreme positions

of displacement. Therefore, the kinetic energy (K)

of such a particle, which is defined as

2

2

1
mv =  K

2 2 21
sin ( + )

2
= m A  t  ω ω φ

2
 

1
sin ( + )

2

2=  k A t ω φ     (14.15)

is also a periodic function of time, being zero

when the displacement is maximum and

maximum when the particle is at the mean

position. Note, since the sign of v is immaterial

in K, the period of K is T/2.

What is the potential energy (U) of a particle

executing simple harmonic motion? In

Chapter 6, we have seen that the concept of

potential energy is possible only for conservative

forces. The spring force F = –kx is a conservative

force, with associated potential energy

21

2
U = k x (14.16)

Hence the potential energy of a particle
executing simple harmonic motion is,

U(x)  =   2

2

1
x k 

         
2 2

 
1

cos ( + )
2

= k A t ω φ  (14.17)

Thus, the potential energy of a particle

executing simple harmonic motion is also

periodic, with period T/2, being zero at the mean

position and maximum at the extreme

displacements.
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It follows from Eqs. (14.15) and (14.17) that

the total energy, E, of the system is,

E  = U + K

2 2 2 2
  

1 1
cos ( + ) + sin ( + )

2 2
=  k A t  k A t ω φ ω φ

2 2 21
cos ( + ) + sin ( + )

2
=  k A t t ω φ ω φ  

Using the familiar trigonometric identity, the
value of the expression in the brackets is unity.
Thus,

21

2
E =  k A (14.18)

The total mechanical energy of a harmonic

oscillator is thus independent of time as expected

for motion under any conservative force. The

time and displacement dependence of the

potential and kinetic energies of a linear simple

harmonic oscillator are shown in

Fig. 14.16.

Observe that both kinetic energy and

potential energy in SHM are seen to be always

positive in Fig. 14.16. Kinetic energy can, of

course, be never negative, since it is

proportional to the square of speed. Potential

energy is positive by choice of the undermined

constant in potential energy. Both kinetic

energy and potential energy peak twice during

each period of SHM. For x = 0, the energy is

kinetic; at the extremes x = ±A, it is all potential

energy. In the course of motion between these

limits, kinetic energy increases at the expense

of potential energy or vice-versa.

u Example 14.7  A block whose mass is 1 kg
is fastened to a spring. The spring has a
spring constant of 50 N m–1. The block is
pulled to a distance x = 10 cm from its
equilibrium position at x = 0 on a frictionless
surface from rest at t = 0. Calculate the
kinetic, potential and total energies of the
block when it is 5 cm away from the mean
position.

Answer The block executes SHM, its angular
frequency, as given by Eq. (14.14b), is

ω =  
k

m

 =  
50 N m

– 1

1kg

             = 7.07 rad s–1

Its displacement at any time t is then given by,

x(t) = 0.1 cos (7.07t )

Therefore, when the particle is 5 cm away from
the mean position, we have

0.05 = 0.1 cos (7.07t )

Or cos (7.07t ) = 0.5 and hence

sin (7.07t )  =
3

2
 

 
= 0.866

Fig. 14.16 Kinetic energy, potential energy and total

energy as a function of time [shown in (a)]

and displacement [shown in (b)] of a particle

in SHM. The kinetic energy and potential

energy both repeat after a period T/2. The

total energy remains constant at all t or x.
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Then, the velocity of the block at x = 5 cm is

      = 0.1 × 7.07 × 0.866 m s–1

          = 0.61 m s–1

Hence the K.E. of the block,

 
2

1
 = 2  vm

           = ½[1kg × (0.6123 m s–1 )2 ]

           = 0.19 J

The P.E. of the block,

  
2

1
 = 2x k 

           = ½(50 N m–1 × 0.05 m × 0.05 m)
           = 0.0625 J

The total energy of the block at x = 5 cm,

           =  K.E. + P.E.

           =  0.25 J

we also know that at maximum displacement,
K.E. is zero and hence the total energy of the
system is equal to the P.E. Therefore, the total
energy of the system,

          = ½(50 N m–1 ×  0.1 m × 0.1 m )

          = 0.25 J
which is same as the sum of the two energies at
a displacement of 5 cm. This is in conformity
with the principle of conservation of energy.   t

14.8   SOME SYSTEMS EXECUTING SIMPLE
HARMONIC MOTION

There are no physical examples of absolutely
pure simple harmonic motion. In practice we
come across systems that execute simple
harmonic motion approximately under certain
conditions. In the subsequent part of this
section, we discuss the motion executed by some
such systems.

14.8.1  Oscillations due to a Spring

The simplest observable example of simple
harmonic motion is the small oscillations of a
block of mass m fixed to a spring, which in turn
is fixed to a rigid wall as shown in Fig. 14.17.
The block is placed on a frictionless horizontal
surface. If the block is pulled on one side and is
released, it then executes a to and fro motion
about the mean position. Let x = 0, indicate the
position of the centre of the block when the

spring is in equilibrium. The positions marked
as –A and +A indicate the maximum
displacements to the left and the right of the
mean position. We have already learnt that
springs have special properties, which were first
discovered by the English physicist Robert
Hooke. He had shown that such a system when
deformed, is subject to a restoring force, the
magnitude of which is proportional to the
deformation or the displacement and acts in
opposite direction.  This is known as Hooke’s
law (Chapter 9). It holds good for displacements
small in comparison to the length of the spring.
At any time t, if the displacement of the block
from its mean position is x, the restoring force F
acting on the block is,

F (x)  = –k x     (14.19)

The constant of proportionality, k, is called
the spring constant, its value is governed by the
elastic properties of the spring. A stiff spring has
large k and a soft spring has small k. Equation
(14.19) is same as the force law for SHM and
therefore the system executes a simple harmonic
motion. From Eq. (14.14) we have,

 =  ω
k

m
   (14.20)

and the period, T, of the oscillator is given by,

  = 2  
m

T
k

π (14.21)

Stiff springs have high value of k (spring
constant). A block of small mass m attached to
a stiff spring will have, according to Eq. (14.20),
large oscillation frequency, as expected
physically.

Fig. 14.17 A linear simple harmonic oscillator

consisting of a block of mass m attached

to a spring. The block moves over a

frictionless surface. The box, when pulled

or pushed and released, executes simple

harmonic motion.
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of pendulum. You can also make your own
pendulum by tying a piece of stone to a long

unstretchable thread, approximately 100 cm

long.  Suspend your pendulum from a suitable

support so that it is free to oscillate. Displace

the stone to one side by a small distance and

let it go. The stone executes a to and fro motion,

it is periodic with a period of about two seconds.
We shall show that this periodic motion is

simple harmonic for small displacements from
the mean position. Consider simple pendulum
— a small bob of mass m tied to an inextensible
massless string of length L. The other end of

the string is fixed to a rigid support. The bob

oscillates in a plane about the vertical line

through the support. Fig. 14.18(a) shows this

system. Fig. 14.18(b) is a kind of ‘free-body’

diagram of the simple pendulum showing the

forces acting on the bob.

u  Example 14.8  A 5 kg collar is attached
to a spring of spring constant 500 N m–1. It
slides without friction over a horizontal rod.
The collar is displaced from its equilibrium
position by 10.0 cm and released. Calculate
(a) the period of oscillation,
(b) the maximum speed and
(c) maximum acceleration of the collar.

Answer  (a) The period of oscillation as given by
Eq. (14.21) is,

 = 2  
m

T
k

π  = 2π
1m N 500

kg 0.5
−

           = (2π/10) s

           = 0.63 s
(b) The velocity of the collar executing SHM is

given by,
v(t ) = –Aω sin (ωt + φ)

The maximum speed is given by,
v

m
 =  Aω

             = 0.1 × 
k

m

             = 0.1 ×
kg 5

1–m N 500

              = 1 m s–1

and it occurs at x = 0
(c) The acceleration of the collar at the

displacement x (t ) from the equilibrium is
given by,

a (t) =  –ω2 x(t)

                 = – 
k

m
 x(t) 

Therefore, the maximum acceleration is,
                 a

max
 = ω2 A

                = 
500 N m

–1

5 kg
 x 0.1 m 

                 = 10 m s–2

and it occurs at the extremities. t

14.8.2  The Simple Pendulum

It is said that Galileo measured the periods of a
swinging chandelier in a church by his pulse
beats. He observed that the motion of the
chandelier was periodic. The system is a kind

(a)

 (b)

Fig. 14.18 (a) A bob oscillating about its mean

position. (b) The radial force T-mg cosθ
provides centripetal force but no torque

about the support. The tangential force

mg sinθ provides the restoring torque.
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Let θ be the angle made by the string with

the vertical. When the bob is at the mean

position, θ = 0

There are only two forces acting on the bob;

the tension T along the string and the vertical

force due to gravity (=mg). The force mg can be

resolved into the component mg cosθ along the

string and mg sinθ perpendicular to it. Since

the motion of the bob is along a circle of length

L and centre at the support point, the bob has

a radial acceleration (ω2L) and also a tangental

acceleration; the latter arises since motion along

the arc of the circle is not uniform. The radial

acceleration is provided by the net radial force

T –mg cosθ, while the tangential acceleration is

provided by mg sinθ. It is more convenient to

work with torque about the support since the

radial force gives zero torque. Torque τ about

the support is entirely provided by the tangental

component of force

τ =  –L (mg sinθ ) (14.22)

This is the restoring torque that tends to reduce
angular displacement — hence the negative
sign. By Newton’s law of rotational motion,

τ   =  I α (14.23)

where I is the moment of inertia of the system
about the support and α is the angular
acceleration. Thus,

I α = –m g sin θ   L (14.24)

Or,

α  =  sin  
m g L
  

I
 θ− (14.25)

We can simplify Eq. (14.25) if we assume that
the displacement θ is small. We know that sin θ
can be expressed as,

sin  ± ...
3! 5!

  
θ θ

θ θ
3 5

  =  − + (14.26)

where θ is in radians.
Now if θ  is small, sin θ can be approximated

by θ and Eq. (14.25) can then be written as,

 α θ  =  −  
mgL

I
 (14.27)

In Table 14.1, we have listed the angle θ in
degrees, its equivalent in radians, and the value

SHM - how small should the amplitude be?

When you perform the experiment to
determine the time period of a simple
pendulum, your teacher tells you to keep
the amplitude small. But have you ever
asked how small is small? Should the
amplitude to 50, 20, 10, or 0.50? Or could it
be 100, 200, or 300?

To appreciate this, it would be better to
measure the time period for different
amplitudes, up to large amplitudes. Of
course, for large oscillations, you will have
to take care that the pendulum oscillates
in a vertical plane. Let us denote the time
period for small-amplitude oscillations as
T (0) and write the time period for amplitude
θ

0
 as T(θ

0
) = cT (0), where c is the multiplying

factor. If you plot a graph of c versus θ
0
,

you will get values somewhat like this:

θ
0

: 200 450 500 700 900

c : 1.02 1.04 1.05 1.10 1.18

This means that the error in the time
period is about 2% at an amplitude of 200,
5% at an amplitude of 500, and 10% at an
amplitude of 700 and 18% at an amplitude
of 900.

In the experiment, you will never be able
to measure T (0) because this means there
are no oscillations. Even theoretically,
sin θ  is exactly equal to θ  only for θ  = 0.
There will be some inaccuracy for all other
values of θ . The difference increases with
increasing θ . Therefore we have to decide
how much error we can tolerate. No
measurement is ever perfectly accurate.
You must also consider questions like
these: What is the accuracy of the
stopwatch? What is your own accuracy in
starting and stopping the stopwatch? You
will realise that the accuracy in your
measurements at this level is never better
than 5% or 10%. Since the above table
shows that the time period of the pendulum
increases hardly by 5% at an amplitude of
500 over its low amplitude value, you could
very well keep the amplitude to be 50° in
your experiments.
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of the function sin θ . From this table it can be
seen that for θ as large as 20 degrees, sin θ is
nearly the same as θ expressed in radians.

Table 14.1  sin θθθθθ as a function of angle θθθθθ

Equation (14.27) is mathematically, identical

to Eq. (14.11) except that the variable is angular

displacement. Hence we have proved that for

small θ, the motion of the bob is simple harmonic.

From Eqs. (14.27) and (14.11),

ω  =  
mgL

I
 

and

 
I

T  
mgL

π  = 2       (14.28)

Now since the string of the simple pendulum
is massless, the moment of inertia I is simply
mL2. Eq. (14.28) then gives the well-known
formula for time period of a simple pendulum.

L
T  

g
π  =  2     (14.29)

u Example 14.9 What is the length of a
simple pendulum, which ticks seconds ?

Answer From Eq. (14.29), the time period of a
simple pendulum is given by,

 
L

T  
g

π  =  2   

From this relation one gets,

2

2
 

4

gT
L

π
  =   

The time period of a simple pendulum, which
ticks seconds, is 2 s. Therefore, for g = 9.8 m s–2

and T  = 2 s, L is

Fig. 14.19 The viscous surrounding medium exerts

a damping force on an oscillating spring,

eventually bringing it to rest.

–2 2

2

9.8(m s ) 4(s )
 

4

  

π

×
 =   

        = 1 m t

14.9  DAMPED SIMPLE HARMONIC MOTION

We know that the motion of a simple pendulum,
swinging in air, dies out eventually. Why does it

happen ? This is because the air drag and the

friction at the support oppose the motion of the

pendulum and dissipate its energy gradually.

The pendulum is said to execute damped
oscillations. In dampled oscillations, the energy
of the system is dissipated continuously; but,

for small damping, the oscillations remain

approximately periodic. The dissipating forces

are generally the frictional forces. To understand

the effect of such external forces on the motion

of an oscillator, let us consider a system as
shown in Fig. 14.19. Here a block of mass m

connected to an elastic spring of spring constant

k oscillates vertically. If the block is pushed down

a little and released, its angular frequency of

oscillation is ω =
k

m
, as seen in Eq. (14.20).

However, in practice, the surrounding medium
(air) will exert a damping force on the motion of
the block and the mechanical energy of the
block-spring system will decrease. The energy
loss will appear as heat of the surrounding
medium (and the block also) [Fig. 14.19].

(degrees) (radians) sin
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The damping force depends on the nature of
the surrounding medium. If the block is
immersed in a liquid, the magnitude of damping
will be much greater and the dissipation of
energy much faster. The damping force is
generally proportional to velocity of the bob.
[Remember Stokes’ Law, Eq. (10.19)] and acts
opposite to the direction of velocity. If the
damping force is denoted by F

d
, we have

F
d
  = –b v     (14.30)

where the positive constant b depends on

characteristics of the medium (viscosity, for

example) and the size and shape of the block,

etc. Eq. (14.30) is usually valid only for small
velocity.

When the mass m is attached to the spring
(hung vertically as shown in Fig. 14.19) and
released, the spring will elongate a little and the
mass will settle at some height. This position,
shown by O in Fig 14.19, is the equilibrium
position of the mass. If the mass is pulled down
or pushed up a little, the restoring force on the
block due to the spring is F

S
 = –kx, where x is

the displacement* of the mass from its
equilibrium position. Thus, the total force acting
on the mass at any time t, is F = –kx –bv.

If a(t) is the acceleration of mass at time t,
then by Newton’s Law of Motion applied along
the direction of motion, we have

m a(t ) = –k x(t ) – b v(t ) (14.31)
Here we have dropped the vector notation

because we are discussing one-dimensional

motion.

Using the first and second derivatives of x (t)

for v (t) and a (t), respectively, we have

2d d

dd 2

x x
m  b   k x  0

tt
     + + = (14.32)

The solution of Eq. (14.32) describes the
motion of the block under the influence of a
damping force which is proportional to velocity.
The solution is found to be of the form

x(t)  =   A e–b t/2m cos (ω′t + φ ) (14.33)

where A  is the amplitude and ω ′ is the angular
frequency of the damped oscillator given by,

  
4m

b

m

k
'

2

2

   −= ω (14.34)

In this function, the cosine function has a

period 2π/ω′ but the function x(t) is not strictly

periodic because of the factor e–b t/2m which
decreases continuously with time. However, if the
decrease is small in one time period T, the motion
represented by Eq. (14.33) is approximately
periodic.

The solution, Eq. (14.33), can be graphically
represented as shown in Fig. 14.20. We can
regard it as a cosine function whose amplitude,
which is Ae–b t/2m, gradually decreases with time.

* Under gravity, the block will be at a certain equilibrium position O on the spring; x here represents the

displacement from that position.

Fig. 14.20 A damped oscillator is approximately

periodic with decreasing amplitude of

oscillation. With greater damping,

oscillations die out faster.

Now the mechanical energy of the undamped
oscillator is 1/2 kA2. For a damped oscillator,
the amplitude is not constant but depends on
time. For small damping, we may use the same
expression but regard the amplitude as A e–bt/2m.

1
( )

2

2 –b t/mE t    k A  e   = (14.35)

Equation (14.35) shows that the total energy
of the system decreases exponentially with time.
Note that small damping means that the

dimensionless ratio 







 

m k

b is much less than 1.
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Of course, as expected, if we put b = 0, all
equations of a damped oscillator in this section
reduce to the corresponding equations of an
undamped oscillator.

u Example 14.10   For the damped oscillator
shown in Fig. 14.19, the mass m of the block
is 200 g, k = 90 N m–1 and the damping
constant b is 40 g s–1. Calculate (a) the
period of oscillation, (b) time taken for its
amplitude of vibrations to drop to half of
its initial value, and (c) the time taken for
its mechanical energy to drop to half its
initial value.

Answer (a) We see that km = 90×0.2 = 18 kg N

m–1 = kg2 s–2; therefore km = 4.243 kg s–1, and

b = 0.04 kg s–1. Therefore, b is much less than

km . Hence, the time period T from Eq. (14.34)

is given by

2
m

T  
k

π=

   –1

0.2 kg
2

90 N m
π=  

   =  0.3 s

(b) Now, from Eq. (14.33), the time, T
1/2

, for the
amplitude to drop to half of its initial value is
given by,

ln(1/2)

/2
T    =

1/2

b m

             
0.6 39

2 200 s
40

 = × ×

             = 6.93 s

(c) For calculating the time, t
1/2

, for its
mechanical energy to drop to half its initial value
we make use of Eq. (14.35). From this equation
we have,

E (t
1/2

)/E (0)   =  exp (–bt
1/2

/m)

Or                  ½   =  exp (–bt
1/2

/m)

              ln (1/2)  =  –(bt
1/2

/m)

Or  t
1/2

  
–1

0.6 39
200 g

40 g s
    

 
= ×

              =  3.46 s
This is just half of the decay period for

amplitude. This is not surprising, because,
according to Eqs. (14.33) and (14.35), energy
depends on the square of the  amplitude. Notice
that there is a factor of 2 in the exponents of
the two exponentials. t

14.10 FORCED OSCILLATIONS
AND RESONANCE

When a system (such as a simple pendulum or

a block attached to a spring) is displaced from

its equilibrium position and released, it oscillates

with its natural frequency ω, and the oscillations

are called free oscillations. All free oscillations

eventually die out because of the ever present

damping forces. However, an external agency

can maintain these oscillations. These are called

forced or driven oscillations. We consider the

case when the external force is itself periodic,

with a frequency ω
d
 called the driven frequency.

The most important fact of forced periodic

oscillations is that the system oscillates not with

its natural frequency ω, but at the frequency ω
d

of the external agency; the free oscillations die

out due to damping. The most familiar example

of forced oscillation is when a child in a garden

swing periodically presses his feet against the

ground (or someone else periodically gives the

child a push) to maintain the oscillations.
Suppose an external force F(t ) of amplitude

F
0
 that varies periodically with time is applied

to a damped oscillator. Such a force can be
represented as,

F(t )  = F
o
 cos ω

d 
t (14.36)

The motion of a particle under the combined
action of a linear restoring force, damping force
and a time dependent driving force represented
by Eq. (14.36) is given by,

m a(t ) = –k x(t ) – bv(t ) + F
o
 cos ω

d 
t    (14.37a)

Substituting d2x/dt2 for acceleration in
Eq. (14.37a) and rearranging it, we get
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2

2

d d
dd

x xm b kx 
tt

+ + =  F
o
 cos ω

d 
t (14.37b)

This is the equation of an oscillator of mass
m on which a periodic force of (angular)
frequency ω

d 
is applied. The oscillator, initially,

oscillates with its natural frequency ω. When
we apply the external periodic force, the
oscillations with the natural frequency die out,
and then the body oscillates with the (angular)
frequency of the external periodic force. Its
displacement, after the natural oscillations die
out, is given by

x(t )  =  A cos (ω
d
t  + φ ) (14.38)

where t is the time measured from the moment
when we apply the periodic force.

The amplitude A is a function of the forced
frequency ω

d
 and the natural frequency ω.

Analysis shows that it is given by

( ){ }2

d d

1/2

F
A

m b

ο

ω ω ω2 2 2 2 2

=

− + (14.39a)

and tan φ =
–v

xd

ο

οω
(14.39b)

where m is the mass of the particle and v
0
 and

x
0
 are the velocity and the displacement of the

particle at time t = 0, which is the moment when
we apply the periodic force. Equation (14.39)
shows that the amplitude of the forced oscillator
depends on the (angular) frequency of the
driving force. We can see a different behaviour
of the oscillator when ω

d
 is far from ω and when

it is close to ω. We consider these two cases.
(a) Small Damping, Driving Frequency far
from Natural Frequency : In this case, ω

d 
b will

be much smaller than m(ω2
 
–ω2

d
), and we can

neglect that term. Then Eq. (14.39) reduces to

A
F

m d

=
−( )
ο

ω ω
2   2

(14.40)

Fig. 14.21 shows the dependence of the
displacement amplitude of an oscillator on the
angular frequency of the driving force for
different amounts of damping present in the
system. It may be noted that in all cases the
amplitude is the greatest when ω

d 
/ω = 1. The

curves in this figure show that smaller the
damping, the taller and narrower is the
resonance peak.

If we go on changing the driving frequency,
the amplitude tends to infinity when it equals
the natural frequency. But this is the ideal case
of zero damping, a case which never arises in a
real system as the damping is never perfectly
zero. You must have experienced in a swing that
when the timing of your push exactly matches
with the time period of the swing, your swing
gets the maximum amplitude. This amplitude
is large, but not infinity, because there is always
some damping in your swing. This will become
clear in the (b).
(b) Driving Frequency Close to Natural

Frequency : If ω
d 
 is very close to ω

 
, m (ω2

 
– 2

dω )

would be much less than ω
d 
b, for any reasonable

value of b, then Eq. (14.39) reduces to

F
A ο

ω
=

d
b

(14.41)

This makes it clear that the maximum
possible amplitude for a given driving frequency
is governed by the driving frequency and the
damping, and is never infinity. The phenomenon
of increase in amplitude when the driving force
is close to the natural frequency of the oscillator
is called resonance.

In our daily life, we encounter phenomena
which involve resonance.  Your experience with

b=70g/s

b=140g/s

b=50g/s (least 

 damping)

Fig. 14.21 The displacement amplitude of a forced

oscillator as a function of the angular
frequency of the driving force. The

amplitude is the greatest at ω
d 
/ω =1, the

resonance condition. The three curves
correspond to different extents of damping

present in the system. The curves 1 and

3 correspond to minimum and maximum
damping in the system.
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motion is gradually damped and not sustained.
Their frequencies of oscillation gradually
change, and ultimately, they oscillate with the
frequency of pendulum 1, i.e., the frequency of
the driving force but with different amplitudes.
They oscillate with small amplitudes. The
response of pendulum 4 is in contrast to this
set of pendulums. It oscillates with the same
frequency as that of pendulum 1 and its
amplitude gradually picks up and becomes very
large. A resonance-like response is seen.
This happens because in this the condition for
resonance is satisfied, i.e. the natural frequency
of the system coincides with that of the
driving force.

We have so far considered oscillating systems

which have just one natural frequency. In
general, a system may have several natural

frequencies. You will see examples of such
systems (vibrating strings, air columns, etc.) in
the next chapter. Any mechanical structure, like

a building, a bridge, or an aircraft may have
several possible natural frequencies. An

external periodic force or disturbance will set
the system in forced oscillation. If, accidentally,

the forced frequency ω
d
 happens to be close to

one of the natural frequencies of the system,
the amplitude of oscillation will shoot up

(resonance), resulting in possible damage. This
is why, soldiers go out of step while crossing a

bridge. For the same reason, an earthquake will
not cause uniform damage to all buildings in
an affected area, even if they are built with the

same strength and material. The natural
frequencies of a building depend on its height,

other size parameters, and the nature of
building material. The one with its natural
frequency close to the frequency of seismic wave

is likely to be damaged more.

SUMMARY

1. The motion that repeats itself is called periodic motion.

2. The period T is the time required for one complete oscillation, or cycle. It is  related to
the frequency ν by,

ν

1
  T =

swings is a good example of resonance. You
might have realised that the skill in swinging to
greater heights lies in the synchronisation of
the rhythm of pushing against the ground with
the natural frequency of the swing.

To illustrate this point further, let us
consider a set of five simple pendulums of
assorted lengths suspended from a common rope
as shown in Fig. 14.22. The pendulums 1 and 4
have the same lengths and the others have
different lengths. Now, let us set pendulum 1
into motion. The energy from this pendulum gets
transferred to other pendulums through  the
connecting rope and they start oscillating. The
driving force is provided through the connecting
rope. The frequency of this force is the frequency
with which pendulum 1 oscillates.  If we observe
the response of pendulums 2, 3 and 5, they first
start oscillating with their natural frequencies
of oscillations and different amplitudes, but this

Fig. 14.22 Five simple pendulums of different

lengths suspended from a common

support.
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The frequency ν of periodic or oscillatory motion is the number of oscillations per
unit time. In the SI, it is measured in hertz :

                      1 hertz = 1 Hz = 1 oscillation per second = 1s–1

3. In simple harmonic motion (SHM), the displacement x (t) of a particle from its
equilibrium position is given by,

x (t)  = A cos (ωt + φ ) (displacement),

in which A
 
 is the amplitude of the displacement, the quantity  (ωt + φ ) is the phase of

the motion, and φ is the phase constant. The angular frequency ω is related to the
period and frequency of the motion by,

                         
2

2    
T

π
ω πν= = (angular frequency).

4. Simple harmonic motion can also be viewed as the projection of uniform circular
motion on the diameter of the circle in which the latter motion occurs.

5. The particle velocity and acceleration during SHM as functions of time are given by,

v (t)  =  –ωA sin (ωt + φ )            (velocity),

                        a (t)  =  –ω2A cos (ωt + φ )

                                = –ω2x (t)                            (acceleration),

Thus we see that both velocity and acceleration of a body executing simple harmonic
motion are periodic functions, having the velocity amplitude v

m
=ω A  and acceleration

amplitude a
m 

=ω 2A, respectively.

6. The force acting in a simple harmonic motion is proportional to the displacement and
is always directed towards the centre of motion.

7. A particle executing simple harmonic motion has, at any time, kinetic energy
K = ½ mv2  and potential energy U = ½ kx2.  If no friction is present the mechanical
energy of the system, E = K + U always remains constant even though K and U change
with time.

8. A particle of mass m oscillating under the influence of Hooke’s law restoring force
given by F = – k x exhibits simple harmonic motion with

ω 
k

m
= (angular frequency)

2
m

T 
k

π= (period)

Such a system is also called a linear oscillator.

9. The motion of a simple pendulum swinging through small angles is approximately
simple harmonic. The period of oscillation is given by,

2
L

T 
g

π=

10. The mechanical energy in a real oscillating system decreases during oscillations because
external forces, such as drag, inhibit the oscillations and transfer mechanical energy
to thermal energy. The real oscillator and its motion are then said to be damped. If the
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damping force is given by F
d
 = –bv, where v is the velocity of the oscillator and b is a

damping constant, then the displacement of the oscillator is given by,

                                     x (t) = A
 
e–bt/2m cos (ω′t + φ )

where ω′, the angular frequency of the damped oscillator, is given by

                                   

2

2
 

4

bk
   

m m
ω ′ = −

If the damping constant is small then ω′ ≈ ω, where ω is the angular frequency of the
undamped oscillator. The mechanical energy E of the damped oscillator is given by

                                    /1

2
2 bt mE(t) kA e −=

11. If an external force with angular frequency ω
d
 acts on an oscillating system with natural

angular frequency ω, the system oscillates with angular frequency ω
d
. The amplitude of

oscillations is the greatest when

                                    ω
d
  =  ω

a condition called resonance.

POINTS TO PONDER

1. The period T is the least time after which motion repeats itself.  Thus, motion repeats
itself after nT where n is an integer.

2. Every periodic motion is not simple harmonic motion. Only that periodic motion
governed by the force law F = – k x is simple harmonic.

3. Circular motion can arise due to an inverse-square law force (as in planetary motion)
as well as due to simple harmonic force in two dimensions equal to: –mω2r.  In the
latter case, the phases of motion, in two perpendicular directions (x and y) must differ

by π/2. Thus, for example, a particle subject to a force  –mω2r with initial position (0,

A) and velocity (ωA, 0) will move uniformly in a circle of radius A.

4. For linear simple harmonic motion with a given ω, two initial conditions are necessary
and sufficient to determine the motion completely.  The  initial  conditions may be (i)
initial position and initial velocity or (ii) amplitude and phase or (iii) energy
and phase.
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5. From point 4 above, given  amplitude or energy, phase of motion is determined by the
initial position or initial velocity.

6. A combination of two simple harmonic motions with arbitrary amplitudes and phases
is not necessarily periodic.  It is periodic only if frequency of one motion is an integral
multiple of the other’s frequency.  However, a periodic motion can always be expressed
as a sum of infinite number of harmonic motions with appropriate amplitudes.

7. The period of SHM does not depend on amplitude or energy or the phase constant.
Contrast this with the periods of planetary orbits under gravitation (Kepler’s third
law).

8. The motion of a simple pendulum is simple harmonic for small angular displacement.

9. For motion of a particle to be simple harmonic, its displacement x must be expressible
in either of the following forms :

x = A cos ωt  +  B sin ωt

x = A cos (ωt + α ), x =  B sin (ωt + β )

The three forms are completely equivalent (any one can be expressed in terms of any
other two forms).

Thus, damped simple harmonic motion [Eq. (14.31)] is not strictly simple harmonic. It
is approximately so only for time intervals much less than 2m/b where b is the damping
constant.

10. In forced oscillations, the steady state motion of the particle (after the forced oscillations
die out) is simple harmonic motion whose frequency is the frequency of the driving
frequency ω

d
, not the natural frequency ω of the particle.

11. In the ideal case of zero damping, the amplitude of simple harmonic motion at resonance
is infinite. Since all real systems have some damping, however small, this situation is
never observed.

12. Under forced oscillation, the phase of harmonic motion of the particle differs from the
phase of the driving force.

Exercises

14.1 Which of the following examples represent periodic motion?
(a) A swimmer completing one (return) trip from one bank of a river to the other

and back.
(b) A freely suspended bar magnet displaced from its N-S direction and released.
(c) A hydrogen molecule rotating about its centre of mass.
(d) An arrow released from a bow.

14.2 Which of the following examples represent (nearly) simple harmonic motion and
which represent periodic but not simple harmonic motion?
(a) the rotation of earth about its axis.
(b) motion of an oscillating mercury column in a U-tube.
(c) motion of a ball bearing inside a smooth curved bowl, when released from a

point slightly above the lower most point.
(d) general vibrations of a polyatomic molecule about its equilibrium position.

14.3 Fig. 14.23 depicts four x-t plots for linear motion of a particle. Which of the plots
represent periodic motion? What is the period of motion (in case of periodic motion) ?
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Fig. 14.23

14.4 Which of the following functions of time represent (a) simple harmonic, (b) periodic
but not simple harmonic, and (c) non-periodic motion? Give period for each case of
periodic motion (ω is any positive constant):
(a) sin ωt – cos ωt

(b) sin3 ωt

(c) 3 cos (π/4 – 2ωt)
(d) cos ωt + cos 3ωt + cos 5ωt

(e) exp (–ω2t2)
(f) 1 + ωt + ω2t2

14.5 A particle is in linear simple harmonic motion between two points, A and B, 10 cm
apart. Take the direction from A to B as the positive direction and give the signs of
velocity, acceleration and force on the particle when it is
(a) at the end A,
(b) at the end B,
(c) at the mid-point of AB going towards A,
(d) at 2 cm away from B going towards A,
(e) at 3 cm away from A going towards B, and
(f) at 4 cm away from B going towards A.

14.6 Which of the following relationships between the acceleration a and the displacement
x of a particle involve simple harmonic motion?
(a) a = 0.7x

(b) a = –200x2

(c) a = –10x

(d) a = 100x3
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14.7 The motion of a particle executing simple harmonic motion is described by the
displacement function,

                 x(t) = A cos (ωt + φ ).

If the initial (t = 0) position of the particle is 1 cm and its initial velocity is ω cm/s,
what are its amplitude and initial phase angle ? The angular frequency of the
particle is π s–1. If instead of the cosine function, we choose the sine function to
describe the SHM : x = B sin (ωt + α), what are the amplitude and initial phase of the
particle with the above initial conditions.

14.8 A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20
cm. A body suspended from this balance, when displaced and released, oscillates
with a period of 0.6 s. What is the weight of the body ?

14.9 A spring having with a spring constant 1200 N m–1 is mounted on a horizontal
table as shown in Fig. 14.24. A mass of 3 kg is attached to the free end of the

spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Fig. 14.24

Determine (i) the frequency of oscillations, (ii)  maximum acceleration of the mass,
and (iii) the maximum speed of the mass.

14.10 In Exercise 14.9, let us take the position of mass when the spring is unstreched as
x = 0, and the direction from left to right as the positive direction of
x-axis. Give x as a function of time t for the oscillating mass if at the moment we
start the stopwatch (t = 0), the mass is
(a) at the mean position,
(b) at the maximum stretched position, and
(c) at the maximum compressed position.
In what way do these functions for SHM differ from each other, in frequency, in
amplitude or the initial phase?

14.11 Figures 14.25 correspond to two circular motions. The radius of the circle, the
period of revolution, the initial position, and the sense of revolution (i.e. clockwise
or anti-clockwise) are indicated on each figure.

Fig. 14.25

Obtain the corresponding simple harmonic motions of the x-projection of the radius
vector of the revolving particle P, in each case.

14.12 Plot the corresponding reference circle for each of the following simple harmonic
motions. Indicate the initial (t =0) position of the particle, the radius of the circle,
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and the angular speed of the rotating particle. For simplicity, the sense of rotation
may be fixed to be anticlockwise in every case: (x is in cm and t is in s).

(a) x = –2 sin (3t + π/3)

(b) x = cos (π/6 – t)

(c) x = 3 sin (2πt + π/4)

(d) x = 2 cos πt

14.13 Figure 14.26 (a) shows a spring of force constant k clamped rigidly at one end and
a mass m attached to its free end. A force F applied at the free end stretches the
spring. Figure 14.26 (b) shows the same spring with both ends free and attached to
a mass m at either end. Each end of the spring in Fig. 14.26(b) is stretched by the
same force F.

Fig. 14.26

(a) What is the maximum extension of the spring in the two cases ?
(b) If the mass in Fig. (a) and the two masses in Fig. (b) are released, what is the

period of oscillation in each case ?

14.14 The piston in the cylinder head of a locomotive has a stroke (twice the amplitude)
of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency
of 200 rad/min, what is its maximum speed ?

14.15 The acceleration due to gravity on the surface of moon is 1.7 m s–2. What is the time
period of a simple pendulum on the surface of moon if its time period on the surface
of earth is 3.5 s ? (g on the surface of earth is 9.8 m s–2)

14.16 Answer the following questions :
(a) Time period of a particle in SHM depends on the force constant k and mass m

of the particle:

T
m

k
= 2π . A simple pendulum executes SHM approximately. Why then is

the time period of a pendulum independent of the mass of the pendulum?

(b) The motion of a simple pendulum is approximately simple harmonic for small
angle oscillations. For larger angles of oscillation, a more involved analysis

shows that T is greater than 2π
l

g
.  Think of a qualitative argument to

appreciate this result.

(c) A man with a wristwatch on his hand falls from the top of a tower. Does the
watch give correct time during the free fall ?

(d) What is the frequency of oscillation of a simple pendulum mounted in a cabin
that is freely falling under gravity ?

14.17 A simple pendulum of length l and having a bob of mass M is suspended in a car.
The car is moving on a circular track of radius R with a uniform speed v. If the
pendulum makes small oscillations in a radial direction about its equilibrium
position, what will be its time period ?
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14.18 A cylindrical piece of cork of density of base area A and height h floats in a liquid of
density ρ

l
.
 
The cork is depressed slightly and then released. Show that the cork

oscillates up and down simple harmonically with a period

                                     T
h

g
1

= 2π
ρ

ρ

where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).

14.19 One end of a U-tube containing mercury is connected to a suction pump and the
other end to atmosphere. A small pressure difference is maintained between the
two columns. Show that, when the suction pump is removed, the column of mercury
in the U-tube executes simple harmonic motion.

Additional Exercises

14.20 An air chamber of volume V has a neck area of cross section a into which a ball of
mass m just fits and can move up and down without any friction (Fig.14.27). Show
that when the ball is pressed down a little and released , it executes SHM. Obtain
an expression for the time period of oscillations assuming pressure-volume variations
of air to be isothermal [see Fig. 14.27].

14.21 You are riding in an automobile of mass 3000 kg. Assuming that you are examining
the oscillation characteristics of its suspension system. The suspension sags
15 cm when the entire automobile is placed on it. Also, the amplitude of  oscillation
decreases by 50% during one complete oscillation. Estimate the values of (a) the
spring constant k and (b) the damping constant b for the spring and shock absorber
system of one wheel, assuming that each wheel supports 750 kg.

14.22 Show that for a particle in linear SHM the average kinetic energy over a period of
oscillation equals the average potential energy over the same period.

14.23 A circular disc of mass 10 kg is suspended by a wire attached to its centre. The wire
is twisted by  rotating the disc and released. The period of torsional oscillations is
found to be 1.5 s. The radius of the disc is 15 cm. Determine the torsional spring
constant of the wire. (Torsional spring constant α is defined by the relation
J = –α θ , where J is the restoring couple and θ the angle of twist).

14.24 A body describes simple harmonic motion with an amplitude of 5 cm and a period of
0.2 s. Find the acceleration and velocity of the body when the displacement is
(a) 5 cm (b) 3 cm (c) 0 cm.

14.25 A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal
plane without friction or damping. It is pulled to a distance x

0
 and pushed towards

the centre with a velocity v
0
 at time t = 0. Determine the amplitude of the resulting

oscillations in terms of the parameters ω, x
0
 and v

0
. [Hint : Start with the equation

x = a cos (ωt+θ) and note that the initial velocity is negative.]

Fig.14.27
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CHAPTER FIFTEEN

WAVES

15.1 INTRODUCTION

In the previous Chapter, we studied the motion of objects

oscillating in isolation. What happens in a system, which is

a collection of such objects? A material medium provides

such an example. Here, elastic forces bind the constituents

to each other and, therefore, the motion of one affects that of

the other. If you drop a little pebble in a pond of still water,

the water surface gets disturbed. The disturbance does not

remain confined to one place, but propagates outward along

a circle. If you continue dropping pebbles in the pond, you

see circles rapidly moving outward from the point where the

water surface is disturbed. It gives a feeling as if the water is

moving outward from the point of disturbance. If you put

some cork pieces on the disturbed surface, it is seen that

the cork pieces move up and down but do not move away

from the centre of disturbance. This shows that the water

mass does not flow outward with the circles, but rather a

moving disturbance is created. Similarly, when we speak,

the sound moves outward from us, without any flow of air

from one part of the medium to another. The disturbances

produced in air are much less obvious and only our ears or

a microphone can detect them. These patterns, which move

without the actual physical transfer or flow of matter as a

whole, are called waves. In this Chapter, we will study such

waves.

Waves transport energy and the pattern of disturbance has
information that propagate from one point to another. All our
communications essentially depend on transmission of sig-
nals through waves. Speech means production of sound
waves in air and hearing amounts to their detection. Often,
communication involves different kinds of waves. For exam-
ple, sound waves may be first converted into an electric cur-
rent signal which in turn may generate an electromagnetic
wave that may be transmitted by an optical cable or via a

15.1 Introduction

15.2 Transverse and

longitudinal waves

15.3 Displacement relation in a

progressive wave

15.4 The speed of a travelling

wave

15.5 The principle of

superposition of waves

15.6 Reflection of waves

15.7 Beats

15.8 Doppler effect

Summary

Points to ponder

Exercises

Additional exercises
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satellite. Detection of the original signal will usu-
ally involve these steps in reverse order.

Not all waves require a medium for their

propagation. We know that light waves can

travel through vacuum. The light emitted by

stars, which are hundreds of light years away,

reaches us through inter-stellar space, which

is practically a vacuum.
The most familiar type of waves such as waves

on a string, water waves, sound waves, seismic
waves, etc. is the so-called mechanical waves.
These waves require a medium for propagation,
they cannot propagate through vacuum. They
involve oscillations of constituent particles and
depend on the elastic properties of the medium.
The electromagnetic waves that you will learn
in Class XII are a different type of wave.
Electromagnetic waves do not necessarily require
a medium - they can travel through vacuum.
Light, radiowaves, X-rays, are all electromagnetic
waves. In vacuum, all electromagnetic waves
have the same speed c, whose value is :

c = 299, 792, 458 ms–1. (15.1)

A third kind of wave is the so-called Matter
waves. They are associated with constituents of
matter : electrons, protons, neutrons, atoms and
molecules. They arise in quantum mechanical
description of nature that you will learn in your
later studies. Though conceptually more abstract
than mechanical or electro-magnetic waves, they
have already found applications in several
devices basic to modern technology; matter
waves associated with electrons are employed

in electron microscopes.

In this chapter we will study mechanical

waves, which require a material medium for

their propagation.

The aesthetic influence of waves on art and

literature is seen from very early times; yet the

first scientific analysis of wave motion dates back
to the seventeenth century. Some of the famous
scientists associated with the physics of wave
motion are Christiaan Huygens (1629-1695),
Robert Hooke and Isaac Newton. The
understanding of physics of waves followed the
physics of oscillations of masses tied to springs
and physics of the simple pendulum. Waves in
elastic media are intimately connected with
harmonic oscillations. (Stretched strings, coiled
springs, air, etc., are examples of elastic media).

We shall illustrate this connection through
simple examples.

Consider a collection of springs connected to
one another as shown in Fig. 15.1. If the spring
at one end is pulled suddenly and released, the
disturbance travels to the other end. What has

happened? The first spring is disturbed from its
equilibrium length. Since the second spring is
connected to the first, it is also stretched or
compressed, and so on. The disturbance moves
from one end to the other; but each spring only
executes small oscillations about its equilibrium
position. As a practical example of this situation,
consider a stationary train at a railway station.
Different bogies of the train are coupled to each
other through a spring coupling. When an
engine is attached at one end, it gives a push to
the bogie next to it; this push is transmitted from
one bogie to another without the entire train
being bodily displaced.

Now let us consider the propagation of sound

waves in air. As the wave passes through air, it

compresses or expands a small region of air. This

causes a change in the density of that region,

say δρ, this change induces a change in pressure,

δp, in that region. Pressure is force per unit area,
so there is a restoring force proportional to
the disturbance, just like in a spring. In this

case, the quantity similar to extension or

compression of the spring is the change in

density. If a region is compressed, the molecules

in that region are packed together, and they tend
to move out to the adjoining region, thereby

increasing the density or creating compression

in the adjoining region. Consequently, the air

in the first region undergoes rarefaction. If a
region is comparatively rarefied the surrounding
air will rush in making the rarefaction move to
the adjoining region. Thus, the compression or
rarefaction moves from one region to another,
making the propagation of a disturbance
possible in air.

Fig. 15.1 A collection of springs connected to each

other. The end A is pulled suddenly

generating a disturbance, which then

propagates to the other end.
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In solids, similar arguments can be made. In
a crystalline solid, atoms or group of atoms are
arranged in a periodic lattice. In these, each
atom or group of atoms is in equilibrium, due to
forces from the surrounding atoms. Displacing
one atom, keeping the others fixed, leads to
restoring forces, exactly as in a spring. So we
can think of atoms in a lattice as end points,
with springs between pairs of them.

In the subsequent sections of this chapter
we are going to discuss various characteristic
properties of waves.

15.2 TRANSVERSE AND LONGITUDINAL
WAVES

We have seen that motion of mechanical waves
involves oscillations of constituents of the
medium. If the constituents of the medium
oscillate perpendicular to the direction of wave
propagation, we call the wave a transverse wave.
If they oscillate along the direction of wave
propagation, we call the wave a longitudinal
wave.

Fig.15.2 shows the propagation of a single
pulse along a string, resulting from a single up
and down jerk. If the string is very long compared

position as the pulse or wave passes through
them. The oscillations are normal to the
direction of wave motion along the string, so this
is an example of transverse wave.

We can look at a wave in two ways. We can fix
an instant of time and picture the wave in space.
This will give us the shape of the wave as a
whole in space at a given instant. Another way
is to fix a location i.e. fix our attention on a
particular element of string and see its
oscillatory motion in time.

Fig. 15.4 describes the situation for
longitudinal waves in the most familiar example
of the propagation of sound waves. A long pipe
filled with air has a piston at one end. A single
sudden push forward and pull back of the piston
will generate a pulse of condensations (higher
density) and rarefactions (lower density) in the
medium (air). If the  push-pull of the piston is
continuous and periodic (sinusoidal), a

Fig. 15.3 A harmonic (sinusoidal) wave travelling
along a stretched string is an example of a
transverse wave. An element of the string
in the region of the wave oscillates about
its equilibrium position perpendicular to the
direction of wave propagation.

Fig. 15.2 When a pulse travels along the length of a

stretched string (x-direction), the elements

of the string oscillate up and down (y-

direction)

to the size of the pulse, the pulse will damp out
before it reaches the other end and reflection
from that end may be ignored. Fig. 15.3 shows a
similar situation, but this time the external
agent gives a continuous periodic sinusoidal up
and down jerk to one end of the string. The
resulting disturbance on the string is then a
sinusoidal wave. In either case the elements of
the string oscillate about their equilibrium mean

Fig. 15.4 Longitudinal waves (sound) generated in a

pipe filled with air by moving the piston up

and down. A volume element of air oscillates

in the direction parallel to the direction of

wave propagation.
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sinusoidal wave will be generated propagating
in air along the length of the pipe. This is clearly
an example of longitudinal waves.

The waves considered above, transverse or

longitudinal, are travelling or progressive waves

since they travel from one part of the medium

to another. The material medium as a whole

does not move, as already noted. A stream, for

example, constitutes motion of water as a whole.

In a water wave, it is the disturbance that moves,

not water as a whole. Likewise a wind (motion

of air as a whole) should not be confused with a

sound wave which is a propagation of

disturbance (in pressure density) in air, without

the motion of air medium as a whole.

In transverse waves, the particle motion is

normal to the direction of propagation of the

wave. Therefore, as the wave propagates, each

element of the medium undergoes a shearing

strain. Transverse waves can, therefore, be

propagated only in those media, which can

sustain shearing stress, such as solids and not

in fluids. Fluids, as well as, solids can sustain

compressive strain; therefore, longitudinal

waves can be propagated in all elastic media.

For example, in medium like steel, both

transverse and longitudinal waves can

propagate, while air can sustain only

longitudinal waves. The waves on the surface

of water are of two kinds: capillary waves and

gravity waves. The former are ripples of fairly

short wavelength—not more than a few

centimetre—and the restoring force that

produces them is the surface tension of water.

Gravity waves have wavelengths typically

ranging from several metres to several hundred

meters. The restoring force that produces these

waves is the pull of gravity, which tends to keep

the water surface at its lowest level. The

oscillations of the particles in these waves are

not confined to the surface only, but extend with

diminishing amplitude to the very bottom. The

particle motion in water waves involves a

complicated motion—they not only move up and

down but also back and forth. The waves in an

ocean are the combination of both longitudinal

and transverse waves.

It is found that, generally, transverse and
longitudinal waves travel with different speed
in the same medium.

uuuuu Example 15.1  Given below are some
examples of wave motion. State in each case
if the wave motion is transverse, longitudinal
or a combination of both:
(a) Motion of a kink in a longitudinal spring

produced by displacing one end of the
spring sideways.

(b) Waves produced in a cylinder
containing a liquid by moving its piston
back and forth.

(c) Waves produced by a motorboat sailing
in water.

(d) Ultrasonic waves in air produced by a
vibrating quartz crystal.

Answer
(a) Transverse and longitudinal
(b) Longitudinal
(c) Transverse and longitudinal
(d) Longitudinal t

15.3 DISPLACEMENT RELATION IN
A  PROGRESSIVE WAVE

For mathematical description of  a travelling
wave, we need a function of both position x and
time t. Such a function at every instant should
give the shape of the wave at that instant. Also,
at every given location, it should describe the
motion of the constituent of the medium at that
location. If we wish to describe a sinusoidal
travelling wave (such as the one shown in Fig.
15.3) the corresponding function must also be
sinusoidal. For convenience, we shall take the
wave to be transverse so that if the position of
the constituents of the medium is denoted by x,
the displacement from the equilibrium position
may be denoted by y. A sinusoidal travelling
wave is then described by:

( , ) sin( )= − ω + φy x t a kx t (15.2)

The term φ in the argument of sine function
means equivalently that we are considering a
linear combination of sine and cosine functions:

( , ) sin( ) cos( )y x t A kx t B kx tω ω= − + − (15.3)

From Equations (15.2) and (15.3),

2 2a A B= +  and  1tanφ −=
B

A








To understand why Equation (15.2)
represents a sinusoidal travelling wave, take a
fixed instant,  say t = t

0
. Then, the argument of

the sine function in Equation (15.2) is simply
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kx + constant. Thus, the shape of the wave (at

any fixed instant) as a function of x  is a sine

wave. Similarly, take a fixed location, say x = x
0
.

Then, the argument of the sine function in
Equation (15.2) is constant -ωt. The
displacement y, at a fixed location, thus, varies
sinusoidally with time. That is, the constituents
of the medium at different positions execute
simple harmonic motion. Finally, as t increases,
x must increase in the positive direction to keep
kx – ωt + φ  constant. Thus, Eq. (15.2) represents
a sinusiodal (harmonic) wave travelling along
the positive direction of the x-axis. On the other
hand, a function

( , ) sin( )= + ω + φy x t a kx t  (15.4)

represents a wave travelling in the negative
direction of x-axis. Fig. (15.5) gives the names of
the various physical quantities appearing in Eq.
(15.2) that we now interpret.

    Fig. 15.6 shows the plots of Eq. (15.2) for
different values of time differing by equal
intervals of time. In a wave, the crest is the
point of maximum positive displacement, the
trough is the point of maximum negative
displacement. To see how a wave travels, we
can fix attention on a crest and see how it
progresses with time. In the figure, this is
shown by a cross (×) on the crest. In the same
manner, we can see the motion of a particular
constituent of the medium at a fixed location,
say at the origin of the x-axis. This is shown
by a solid dot (•). The plots of Fig. 15.6 show
that with time, the solid dot (•) at the origin
moves periodically, i.e., the particle at the
origin oscillates about its mean position as
the wave progresses. This is true for any other
location also. We also see that during the time
the solid dot (•) has completed one full
oscillation, the crest has moved further by a
certain distance.

Using the plots of Fig. 15.6, we now define
the various quantities of Eq. (15.2).

15.3.1  Amplitude and Phase

In Eq. (15.2), since the sine function varies

between 1 and –1, the displacement y (x,t) varies

between a and –a. We can take a to be a positive

constant, without any loss of generality. Then,

a represents the maximum displacement of the

constituents of the medium from their

equilibrium position. Note that the displacement

y may be positive or negative, but a is positive.

It is called the amplitude of the wave.

The quantity (kx – ωt + φ) appearing as the

argument of the sine function in Eq. (15.2) is

called the phase of the wave. Given the

amplitude a, the phase determines the

displacement of the wave at any position and

at any instant. Clearly φ is the phase at x = 0

and t = 0. Hence, φ is called the initial phase

angle. By suitable choice of origin on the x-axis

and the intial time, it is possible to have φ = 0.

Thus there is no loss of generality in dropping

φ, i.e., in taking Eq. (15.2) with φ = 0.

Fig. 15.5 The meaning of standard symbols in

Eq. (15.2)

y(x,t) : displacement as a function of
position x and time t

a : amplitude of a wave
ω : angular frequency of the wave
k : angular wave number
kx–ωt+φ : initial phase angle (a+x = 0, t = 0)

Fig. 15.6 A harmonic wave progressing along the

positive direction of x-axis at different times.
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15.3.2  Wavelength and Angular Wave
Number

The minimum distance between two points

having the same phase is called the wavelength

of the wave, usually denoted by λ. For simplicity,

we can choose points of the same phase to be

crests or troughs. The wavelength is then the

distance between two consecutive crests or

troughs in a wave. Taking  φ = 0 in Eq. (15.2),

the displacement at  t = 0 is given by

( , 0) sin=y x a kx      (15.5)

Since the sine function repeats its value after
every 2π change in angle,

sin sin( ) sinkx kx n k x
n

k
= + = +







2

2
π

π

That is the displacements at points x and at

2n
x

k

π
+

are the same, where n=1,2,3,... The 1east
distance between points with the same
displacement (at any given instant of time) is
obtained by taking n = 1. λ  is then given by

2

k

π
λ =      or   

2
k

π

λ
=     (15.6)

k is the angular wave number or propagation
constant; its SI unit is radian per metre or

1
 rad m

− *

15.3.3 Period, Angular Frequency and

Frequency

Fig. 15.7 shows again a sinusoidal plot. It

describes not the shape of the wave at a certain

instant but the displacement of an element (at

any fixed location) of the medium as a function

of time. We may for, simplicity, take Eq. (15.2)

with φ = 0 and monitor the motion of the element

say at 0x = . We then get

(0, ) sin( )y t a tω= −

   sina tω= −

Now, the period of oscillation of the wave is the
time it takes for an element to complete one full
oscillation. That is

sin sin ( T)a t a tω ω− = − +

   sin( T)a tω ω= − +

Since sine function repeats after every 2π ,

T 2ω π=   or   
2

T

π
ω = (15.7)

ω  is called the angular frequency of the wave.

Its SI unit is rad s –1. The frequency ν is the
number of oscillations per second. Therefore,

1

T 2

ω
ν

π
= =  (15.8)

ν  is usually measured in hertz.

In the discussion above, reference has always

been made to a wave travelling along a string or

a transverse wave. In a longitudinal wave, the

displacement of an element of the medium is

parallel to the direction of propagation of the

wave. In Eq. (15.2), the displacement function

for a longitudinal wave is written as,

s(x, t) = a sin (kx – ωt + φ) (15.9)

where s(x, t ) is the displacement of an element
of the medium in the direction of propagation
of the wave at position x and time t. In Eq. (15.9),
a

 
is the displacement amplitude; other

quantities have the same meaning as in case
of a transverse wave except that the
displacement function y (x, t ) is to be replaced
by the function s (x, t ).

* Here again, ‘radian’ could be dropped and the units could be written merely as m–1. Thus, k represents 2π
times the number of waves (or the total phase difference) that can be accommodated per unit length, with SI

units m–1.

Fig. 15.7 An element of a string at a fixed location

oscillates in time with amplitude a and

period T, as the wave passes over it.

2020-21



WAVES 373

uuuuu Example 15.2  A wave travelling along a
string is described by,

y(x, t) = 0.005 sin (80.0 x – 3.0 t),

in which the numerical constants are in
SI units (0.005 m, 80.0 rad m–1, and
3.0 rad s–1). Calculate (a) the amplitude,
(b) the wavelength, and (c) the period and
frequency of the wave. Also, calculate the
displacement y of the wave at a distance
x = 30.0 cm and time t = 20 s ?

Answer  On comparing this displacement
equation with Eq. (15.2),

y (x, t ) = a sin (kx –  ωt ),

we find
(a) the amplitude of the wave is 0.005 m = 5 mm.
(b) the angular wave number k and angular

frequency ω are

k = 80.0  m–1 and ω = 3.0 s–1

We, then, relate the wavelength λ to k through
Eq. (15.6),

λ = 2π/k

   180.0 m

2π
−

=

=  7.85 cm

(c) Now, we relate T to ω by the relation

T = 2π/ω

                   1
3.0 s

2π
−

=

                    = 2.09 s

and frequency, v  = 1/T = 0.48 Hz

The displacement y at x = 30.0 cm and
time t = 20 s is given by

y  = (0.005 m) sin (80.0 × 0.3 – 3.0 × 20)

            = (0.005 m) sin (–36 + 12π)
 = (0.005 m) sin (1.699)

            = (0.005 m) sin (970) j 5 mm   t

15.4   THE SPEED OF A TRAVELLING WAVE

To determine the speed of propagation of a
travelling wave, we can fix our attention on any
particular point on the wave (characterised by
some value of the phase) and see how that point
moves in time. It is convenient to look at the

motion of the crest of the wave. Fig. 15.8 gives
the shape of the wave at two instants of time,
which differ by a small time internal ∆t. The
entire wave pattern is seen to shift to the right
(positive direction of x-axis) by a distance ∆x. In
particular, the crest shown by a dot (• ) moves a

distance ∆x in time ∆t. The speed of the wave is
then ∆x/∆t. We can put the dot (• ) on a point
with any other phase. It will move with the same
speed v (otherwise the wave pattern will not
remain fixed). The motion of a fixed phase point
on the wave is given by

kx – ωt = constant (15.10)

Thus, as time t changes, the position x of the
fixed phase point must change so that the phase
remains constant. Thus,

kx – ωt = k(x+∆x) – ω(t+∆t)

or k ∆x – ω ∆t =0

Taking ∆x, ∆t vanishingly small, this gives

ω 
= =

d

 dx
v

t k
(15.11)

Relating ω to T and k to λ, we get

2

2 /

πν λ
λν

π λ
= = =v

T
(15.12)

Eq. (15.12), a general relation for all
progressive waves, shows that in the time
required for one full oscillation by any
constituent of the medium, the wave pattern
travels a distance equal to the wavelength of the
wave. It should be noted that the speed of a
mechanical wave is determined by the inertial
(linear mass density for strings, mass density

Fig. 15.8 Progression of a harmonic wave from time

t  to t + ∆t. where ∆t is a small interval.

The wave pattern as a whole shifts to the

right. The crest of the wave (or a point with

any fixed phase) moves right by the distance

∆x in time ∆t.
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in general) and elastic properties (Young’s
modulus for linear media/ shear modulus, bulk
modulus) of the medium. The medium
determines the speed; Eq. (15.12) then relates
wavelength to frequency for the given speed. Of
course, as remarked earlier, the medium can
support both transverse and longitudinal waves,
which will have different speeds in the same
medium. Later in this chapter, we shall obtain
specific expressions for the speed of mechanical
waves in some media.

15.4.1 Speed of a Transverse Wave on
Stretched String

The speed of a mechanical wave is determined
by the restoring force setup in the medium when
it is disturbed and the inertial properties (mass
density) of the medium. The speed is expected to
be directly related to the former and inversely to
the latter. For waves on a string, the restoring
force is provided by the tension T in the string.
The inertial property will in this case be linear
mass density µ, which is mass m  of the string
divided by its length L. Using Newton’s Laws of
Motion, an exact formula for the wave speed on
a string can be derived, but this derivation is
outside the scope of this book. We shall,
therefore, use dimensional analysis. We already
know that dimensional analysis alone can never
yield the exact formula. The overall
dimensionless constant is always left
undetermined by dimensional analysis.

The dimension of µ is [ML–1] and that of T is
like force, namely [MLT–2]. We need to combine
these dimensions to get the dimension of speed
v [LT–1]. Simple inspection shows that the
quantity T/µ has the relevant dimension

MLT

ML
L T

−

−

−
 

 

=  

2

1

2 2

Thus if T and µ are assumed to be the only
relevant physical quantities,

v  = C 
T

µ
(15.13)

where C is the undetermined constant of
dimensional analysis. In the exact formula, it
turms out, C=1. The speed of transverse waves
on a stretched string is given by

v  = 
µ
T

  
(15.14)

Note the important point that the speed v

depends only on the properties of the medium T
and µ (T is a property of the stretched string
arising due to an external force). It does not
depend on wavelength or frequency of the wave
itself. In higher studies, you will come across
waves whose speed is not independent of
frequency of the wave. Of the two parameters λ
and ν the source of disturbance determines the
frequency of the wave generated. Given the

Propagation of a pulse on a rope
You can easily see the motion of a pulse on a rope. You can also see
its reflection from a rigid boundary and measure its velocity of travel.
You will need a rope of diameter 1 to 3 cm, two hooks and some
weights. You can perform this experiment in your classroom or
laboratory.

Take a long rope or thick string of diameter 1 to 3 cm, and tie it to
hooks on opposite walls in a hall or laboratory. Let one end pass on
a hook and hang some weight (about 1 to 5 kg) to it. The walls may
be about 3 to 5 m apart.

Take a stick or a rod and strike the rope hard at a point near one
end. This creates a pulse on the rope which now travels on it. You
can see it reaching the end and reflecting back from it. You can
check the phase relation between the incident pulse and reflected
pulse. You can easily watch two or three reflections before the pulse
dies out. You can take a stopwatch and find the time for the pulse
to travel the distance between the walls, and thus measure its

velocity. Compare it with that obtained from Eq. (15.14).
This is also what happens with a thin metallic string of a musical instrument. The major difference is

that the velocity on a string is fairly high because of low mass per unit length, as compared to that on a
thick rope. The low velocity on a rope allows us to watch the motion and  make measurements beautifully.

2020-21



WAVES 375

speed of the wave in the medium and the
frequency Eq. (15.12) then fixes the wavelength

v
λ

ν
  = (15.15)

uuuuu Example 15.3 A steel wire 0.72 m long has
a mass of 5.0 ×10–3 kg. If the wire is under
a tension of 60 N, what is the speed of
transverse waves on the wire ?

Answer Mass per unit length of the wire,

m 72.0
kg 100.5 3−×

=µ

   = 6.9 ×10–3 kg m–1

Tension, T = 60 N
The speed of wave on the wire is given by

 
1

13
m  93

mkg 109.6

N 60 −
−−

=
×

== s
T

  v
µ   t

15.4.2 Speed of a Longitudinal Wave
(Speed of Sound)

In a longitudinal wave, the constituents of the
medium oscillate forward and backward in the
direction of propagation of the wave. We have
already seen that the sound waves travel in the
form of compressions and rarefactions of small
volume elements of air.  The elastic property that
determines the stress under compressional
strain is the bulk modulus of the medium defined
by (see Chapter 9)

P
B  

V/V

∆
= −

∆
(15.16)

Here, the change in pressure ∆P produces a

volumetric strain 
V

V

∆
. B has the same dimension

as pressure and given in SI units in terms of
pascal (Pa). The inertial property relevant for the
propagation of wave is the mass density ρ, with
dimensions [ML–3]. Simple inspection reveals
that quantity B/ρ has the relevant dimension:

(15.17)

Thus, if B and ρ  are considered to be the only

relevant physical quantities,

v  = C 
B

ρ
(15.18)

where, as before, C is the undetermined constant
from dimensional analysis. The exact derivation
shows that C=1. Thus, the general formula for
longitudinal waves in a medium is:

v  = 
B

ρ
(15.19)

For a linear medium, like a solid bar, the
lateral expansion of the bar is negligible and we
may consider it to be only under longitudinal
strain. In that case, the relevant modulus of
elasticity is Young’s modulus, which has the
same dimension as the Bulk modulus.
Dimensional analysis for this case is the same
as before and yields a relation like Eq. (15.18),
with an undetermined C, which the exact
derivation shows to be unity. Thus, the speed of
longitudinal waves in a solid bar is given by

 v  = 
ρ
Y (15.20)

where Y is the Young’s modulus of the material
of the bar. Table 15.1 gives the speed of sound
in some media.

Table 15.1 Speed of Sound in some Media

   Liquids and solids generally have higher speed
of sound than gases. [Note for solids, the speed
being referred to is the speed of longitudinal
waves in the solid]. This happens because they
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are much more difficult to compress than gases
and so have much higher values of bulk modulus.
Now, see Eq. (15.19). Solids and liquids have

higher mass densities ( ρ ) than gases. But the

corresponding increase in both the modulus (B)

of solids and liquids is much higher. This is the
reason why the sound waves travel faster in
solids and liquids.

We can estimate the speed of sound in a gas
in the ideal gas approximation. For an ideal gas,
the pressure P, volume V and temperature T are
related by (see Chapter 11).

PV = Nk
B
T (15.21)

where N is the number of molecules in volume
V, k

B
 is the Boltzmann constant and T the

temperature of the gas (in Kelvin). Therefore, for
an isothermal change it follows from Eq.(15.21)
that

V∆P + P∆V  = 0

or P
V/V

P
 =

∆

∆
−

Hence, substituting in Eq. (15.16), we have

B = P

Therefore, from Eq. (15.19) the speed of a
longitudinal wave in an ideal gas is given by,

v  = 
ρ
P (15.22)

This relation was first given by Newton and
is known as Newton’s formula.

uuuuu Example 15.4  Estimate the speed of
sound in air at standard temperature and
pressure. The mass of 1 mole of air is
29.0 ×10–3 kg.

Answer We know that 1 mole of any gas
occupies 22.4 litres at STP. Therefore, density
of air at STP is:
 ρ

o
 = (mass of one mole of air)/ (volume of one

mole of air at STP)
3

3 3

29.0 10 kg

22.4 10 m
 

−

−

×
=

×

=  1.29 kg  m–3

According to Newton’s formula for the speed
of sound in a medium, we get for the speed of
sound in air at STP,

 = 280 m s–1   (15.23)

t

The result shown in Eq.(15.23) is about 15%
smaller as compared to the experimental value
of 331 m s–1 as given in Table 15.1. Where
did we go wrong ? If we examine the basic
assumption made by Newton that the pressure
variations in a medium during propagation of
sound are isothermal, we find that this is not
correct. It was pointed out by Laplace that the
pressure variations in the propagation of sound
waves are so fast that there is little time for the
heat flow to maintain constant temperature.
These variations, therefore, are adiabatic and
not isothermal. For adiabatic processes the ideal
gas satisfies the relation (see Section 12.8),

PV γ  = constant

i.e. ∆(PV γ )  = 0

or P γ V γ –1 ∆V + V γ ∆P = 0

where γ is the ratio of two specific heats,
C

p
/C

v
.

Thus, for an ideal gas the adiabatic bulk
modulus is given by,

B
ad

 = 
V/V

P
 
∆

∆
−

  =  γP

   The speed of sound is, therefore, from Eq.
(15.19), given by,

v = 
ρ

γ P (15.24)

This modification of Newton’s formula is referred
to as the Laplace correction. For air
γ = 7/5. Now using Eq. (15.24) to estimate the speed
of sound in air at STP, we get a value 331.3 m s–1,
which agrees with the measured speed.

15.5 THE PRINCIPLE OF SUPERPOSITION
OF WAVES

What happens when two wave pulses travelling

in opposite directions cross each other

(Fig. 15.9)? It turns out that wave pulses

continue to retain their identities after they have

crossed. However, during the time they overlap,

the wave pattern is different from either of the

pulses. Figure 15.9 shows the situation when

two pulses of equal and opposite shapes move

towards each other. When the pulses overlap,

the resultant displacement is the algebraic sum

of the displacement due to each pulse. This is

known as the principle of superposition of waves.
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According to this principle, each pulse moves
as if others are not present. The constituents of
the medium, therefore, suffer displacments due
to both and since the displacements can be
positive and negative, the net displacement is
an algebraic sum of the two. Fig. 15.9 gives
graphs of the wave shape at different times. Note
the dramatic effect in the graph (c); the
displacements due to the two pulses have exactly
cancelled each other and there is zero
displacement throughout.
    To put the principle of superposition
mathematically, let y

1
 (x,t) and y

2
 (x,t) be the

displacements due to two wave disturbances in
the medium. If the waves arrive in a region
simultaneously, and therefore, overlap, the net
displacement y (x,t) is given by

y     (x, t ) =  y
1
(x, t ) +  y

2
(x, t ) (15.25)

If we have two or more waves moving in the
medium the resultant waveform is the sum of
wave functions of individual waves. That is, if
the wave functions of the moving waves are

y
1
 = f

1
(x–vt),

y
2
 = f

2
(x–vt),

..........

           ..........

           y
n
 = f

n
 (x–vt)

then the wave funct ion descr ib ing the
disturbance in the medium is

y = f
1
(x – vt)+ f

2
(x – vt)+  ...+ f

n
(x – vt)

   ( )
=1i

n
 f  x vt

i
= −∑ (15.26)

The principle of superposition is basic to the
phenomenon of interference.

For simplicity, consider two harmonic
travelling waves on a stretched string, both with
the same ω (angular frequency) and k (wave
number), and, therefore, the same wavelength
λ. Their wave speed will be identical. Let us
further assume that their amplitudes are equal
and they are both travelling in the positive
direction of x-axis. The waves only differ in their
initial phase. According to Eq. (15.2), the two
waves are described by the functions:

y
1
(x, t) = a sin (kx – ωt) (15.27)

and y
2
(x, t) =  a sin (kx – ωt + φ ) (15.28)

The net displacement is then, by the principle
of superposition, given by

y  (x, t ) = a sin (kx – ωt) + a sin (kx – ωt + φ )
(15.29)

( ) ( )
2sin cos

2 2

kx t kx t
a

ω ω φ φ − + − + 
=   

   
(15.30)

where we have used the familiar trignometric

identity for sin sinA B+ . We then have

( ), 2 cos sin
2 2

y x t a kx t
φ φ

ω
 

= − + 
 

(15.31)

Eq. (15.31) is also a harmonic travelling wave in
the positive direction of x-axis, with the same
frequency and wavelength. However, its initial

phase angle is 
2

φ
. The significant thing is that

its amplitude is a function of the phase difference
φ between the constituent two waves:

A(φ)  =  2a cos ½φ (15.32)
For φ = 0, when the waves are in phase,

( ) ( ), 2 siny x t a kx tω= − (15.33)

i.e., the resultant wave has amplitude 2a, the

largest possible value for A. For φ π= , the

Fig. 15.9 Two pulses having equal and opposite

displacements moving in opposite

directions. The overlapping pulses add up

to zero displacement in curve (c).
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reflected. The phenomenon of echo is an example
of reflection by a rigid boundary. If the boundary
is not completely rigid or is an interface between
two different elastic media, the situation is some
what complicated. A part of the incident wave is
reflected and a part is transmitted into the
second medium. If a wave is incident obliquely
on the boundary between two different media
the transmitted wave is called the refracted
wave. The incident and refracted waves obey
Snell’s law of refraction, and the incident and
reflected waves obey the usual laws of
reflection.

Fig. 15.11 shows a pulse travelling along a
stretched string and being reflected by the
boundary. Assuming there is no absorption of
energy by the boundary, the reflected wave has
the same shape as the incident pulse but it
suffers a phase change of π or 1800 on reflection.
This is because the boundary is rigid and the
disturbance must have zero displacement at all
times at the boundary. By the principle of
superposition, this is possible only if the reflected
and incident waves differ by a phase of π, so that
the resultant displacement is zero. This
reasoning is based on boundary condition on a
rigid wall. We can arrive at the same conclusion
dynamically also. As the pulse arrives at the wall,
it exerts a force on the wall. By Newton’s Third
Law, the wall exerts an equal and opposite force
on the string generating a reflected pulse that
differs by a phase of π.

Fig. 15.11 Reflection of a pulse meeting a rigid boundary.

Fig. 15.10 The resultant of two harmonic waves of

equal amplitude and wavelength

according to the principle of superposition.

The amplitude of the resultant wave

depends on the phase difference φ, which

is zero  for (a) and π for (b)

waves are completely, out of phase and the
resultant wave has zero displacement
everywhere at all times

y   (x, t )  = 0 (15.34)
Eq. (15.33) refers to the so-called constructive
interference of the two waves
where the amplitudes add up in
the resultant wave. Eq. (15.34)
is the case of destructive
intereference where the
amplitudes subtract out in the
resultant wave. Fig. 15.10
shows these two cases of
interference of waves arising
from the principle of
superposition.

15.6 REFLECTION OF
WAVES

So far we considered waves
propagating in an unbounded
medium. What happens if a
pulse or a wave meets a
boundary? If the boundary is
rigid, the pulse or wave gets
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If on the other hand, the boundary point is
not rigid but completely free to move (such as in
the case of a string tied to a freely moving ring
on a rod), the reflected pulse has the same phase
and amplitude (assuming no energy dissipation)
as the incident pulse. The net maximum
displacement at the boundary is then twice the
amplitude of each pulse. An example of non- rigid
boundary is the open end of an organ pipe.

To summarise, a travelling wave or pulse
suffers a phase change of π on reflection at a
rigid boundary and no phase change on
reflection at an open boundary. To put this
mathematically, let the incident travelling wave
be

( ) ( )2
, sin ω= −y x t a kx t

At a rigid boundary, the reflected wave is given
by

y
r
(x, t) = a sin (kx – ωt + π).

   = – a sin (kx – ωt ) (15.35)
At an open boundary, the reflected wave is given
by

y
r
(x, t ) = a sin (kx – ωt + 0).

   = a sin (kx – ωt ) (15.36)

Clearly, at the rigid boundary, 
2

0= + =
r

y y y

at all times.

15.6.1   Standing Waves and Normal Modes

We considered above reflection at one boundary.
But there are familiar situations (a string fixed
at either end or an air column in a pipe with
either end closed) in which reflection takes place
at two or more boundaries. In a string, for
example, a wave travelling in one direction will
get reflected at one end, which in turn will travel
and get reflected from the other end. This will
go on until there is a steady wave pattern set
up on the string. Such wave patterns are called
standing waves or stationary waves. To see this
mathematically, consider a wave travelling
along the positive direction of x-axis and a
reflected wave of the same amplitude and
wavelength in the negative direction of x-axis.
From Eqs. (15.2) and (15.4), with φ = 0, we get:

y
1
(x, t ) = a sin (kx – ωt )

y
2
(x, t ) = a sin (kx + ωt )

The resultant wave on the string is, according
to the principle of superposition:

y (x, t) =  y
1
(x, t ) + y

2
(x, t )

= a [sin (kx – ωt) + sin (kx + ωt)]

Using the familiar trignometric identity
Sin (A+B) + Sin (A–B) = 2 sin A cosB we get,

y (x, t ) = 2a sin kx cos ωt (15.37)

Note the important difference in the wave
pattern described by Eq. (15.37) from that
described by Eq. (15.2) or Eq. (15.4). The terms
kx and ωt appear separately, not in the
combination kx - ωt. The amplitude of this wave
is 2a sin kx. Thus, in this wave pattern, the
amplitude varies from point-to-point, but each
element of the string oscillates with the same
angular frequency ω or time period. There is no
phase difference between oscillations of different
elements of the wave. The string as a whole
vibrates in phase with differing amplitudes at
different points. The wave pattern is neither
moving to the right nor to the left. Hence, they
are called standing or stationary waves. The
amplitude is fixed at a given location but, as
remarked earlier, it is different at different
locations. The points at which the amplitude is
zero (i.e., where there is no motion at all) are
nodes; the points at which the amplitude is the
largest are called antinodes. Fig. 15.12 shows
a stationary wave pattern resulting from
superposition of two travelling waves in
opposite directions.

The most significant feature of stationary
waves is that the boundary conditions constrain
the possible wavelengths or frequencies of
vibration of the system. The system cannot
oscillate with any arbitrary frequency (contrast
this with a harmonic travelling wave), but is
characterised by a set of natural frequencies or
normal modes of oscillation. Let us determine
these normal modes for a stretched string fixed
at both ends.

First, from Eq. (15.37), the positions of nodes
(where the amplitude is zero) are given by
sin kx = 0 .
which implies

kx = nπ;   n = 0, 1, 2, 3, ...

Since, k = 2π/λ , we get

x = 
λ

2

n
 ; n = 0, 1, 2, 3, ...        (15.38)

Clearly, the distance between any two

successive nodes is 
λ

2
. 
In the same way, the

2020-21



PHYSICS380

positions of antinodes (where the amplitude is
the largest) are given by the largest value of sin
kx :

sin kx
 
= 1

which implies

kx = (n + ½) π ; n = 0, 1, 2, 3, ...

With k = 2π/λ, we get

 x = (n + ½)
2

λ
 ; n = 0, 1, 2, 3, ...                (15.39)

Again the distance between any two consecutive

antinodes is 
2

λ
. Eq. (15.38) can be applied to

the case of a stretched string of length L fixed
at both ends. Taking one end to be at x = 0, the
boundary conditions are that x = 0 and x = L
are positions of nodes. The x = 0 condition is
already satisfied. The x = L node condition
requires that the length L is related to λ by

L = n 
2

λ
;     n = 1, 2, 3, ...      (15.40)

Thus, the possible wavelengths of stationary
waves are constrained by the relation

λ  = 
2L

n
;    n = 1, 2, 3, … (15.41)

with corresponding frequencies

v =  
2L

nv
, for  n = 1, 2, 3, (15.42)

We have thus obtained the natural frequencies
- the normal modes of oscillation of the system.
The lowest possible natural frequency of a
system is called its fundamental mode or the
first harmonic. For the stretched string fixed

at either end it is given by v = 
v

L2
, corresponding

to n = 1 of Eq. (15.42). Here v is the speed of
wave determined by the properties of the
medium. The n = 2 frequency is called the
second harmonic; n = 3 is the third harmonic

Fig. 15.12 Stationary waves arising from superposition of two harmonic waves travelling in opposite directions.

Note that the positions of zero displacement (nodes) remain fixed at all times.
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and so on. We can label the various
harmonics by the symbol ν

n
 ( n = 1,

2, ...).

Fig. 15.13 shows the first six

harmonics of a stretched string

fixed at either end. A string need not
vibrate in one of these modes only.

Generally, the vibration of a string

will be a superposition of different

modes; some modes may be more

strongly excited and some less.

Musical instruments like sitar or
violin are based on this principle.

Where the string is plucked or

bowed, determines which modes are

more prominent than others.

Let us next consider normal

modes of oscillation of an air column
with one end closed and the other

open. A glass tube partially filled

with water illustrates this system.

The end in contact with water is a

node, while the open end is an

antinode. At the node the pressure
changes are the largest, while the

displacement is minimum (zero). At

the open end - the antinode, it is

just the other way - least pressure

change and maximum amplitude of

displacement. Taking the end in
contact with water to be x = 0, the

node condition (Eq. 15.38) is already

satisfied. If the other end x = L is an

antinode, Eq. (15.39) gives

L =   n +






1

2
 
2

λ
, for n = 0, 1, 2, 3, …

The possible wavelengths are then restricted by
the relation :

λ  = 
( )

2

1 2

L

n  + /
,  for n = 0, 1, 2, 3,... (15.43)

The normal modes – the natural frequencies –
of the system are

ν  =  n +






1

2 2

v

L
; n = 0, 1, 2, 3, ... (15.44)

The fundamental frequency corresponds to n = 0,

and is given by 
v

L4
 . The higher frequencies

are odd harmonics, i.e., odd multiples  of the

fundamental frequency : 3
v

L4
, 5

v

L4
, etc.

Fig. 15.14 shows the first six odd harmonics of
air column with one end closed and the other
open. For a pipe open at both ends, each end is
an antinode. It is then easily seen that an open
air column at both ends generates all harmonics
(See Fig. 15.15).

The systems above, strings and air columns,
can also undergo forced oscillations (Chapter
14). If the external frequency is close to one of
the natural frequencies, the system shows
resonance.

Fig. 15.13  The first six harmonics of vibrations of a stretched

string fixed at both ends.
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Normal modes of a circular membrane rigidly
clamped to the circumference as in a tabla are
determined by the boundary condition that no
point on the circumference of the membrane
vibrates. Estimation of the frequencies of normal
modes of this system is more complex. This
problem involves wave propagation in two
dimensions. However, the underlying physics is
the same.

uuuuu Example 15.5  A pipe, 30.0 cm long, is
open at both ends. Which harmonic mode
of the pipe resonates a 1.1 kHz source?  Will
resonance with the same source be
observed if one end of the pipe is closed ?
Take the speed of sound in air as
330 m s–1.

Answer  The first harmonic frequency is given
by

                ν
1
 = 

L

vv

2
  

1
=

λ
     (open pipe)

where L is the length of the pipe. The frequency
of its nth harmonic is:

ν
n
 = 

L

nv

2
, for n = 1, 2, 3, ... (open pipe)

First few modes of an open pipe are shown in
Fig. 15.15.

For L = 30.0 cm, v = 330 m s–1,

ν
n
 = 

1 330 (m s )

0.6  (m)

−n
 = 550 n s–1

Clearly, a source of frequency 1.1 kHz will
resonate at v

2
, i.e. the second harmonic.

Now if one end of the pipe is closed (Fig. 15.15),
it follows from Eq. (14.50) that the fundamental
frequency is

ν
1
 =  

L

vv

4
  

1
=

λ
 (pipe closed at one end)

and only the odd numbered harmonics are
present :

ν
3
 = 

3

4

v

L
,  ν

5
 = 

5

4

v

L
, and so on.

For L = 30 cm and v = 330 m s–1, the
fundamental frequency of the pipe closed at one
end is 275 Hz and the source frequency
corresponds to its fourth harmonic. Since this
harmonic is not a possible mode, no resonance
will be observed with the source, the moment
one end is closed. t

15.7   BEATS

‘Beats’ is an interesting phenomenon arising
from interference of waves. When two harmonic
sound waves of close (but not equal) frequencies

Fig. 15.14 Normal modes of an air column open at

one end and closed at the other end. Only

the odd harmonics are seen to be possible.

Fundamental
or third fifth

first harmonic harmonic harmonic

seventh ninth eleventh
harmonic harmonic harmonic
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are heard at the same time, we hear a sound of
similar frequency (the average of two close
frequencies), but we hear something else also.
We hear audibly distinct waxing and waning of
the intensity of the sound, with a frequency
equal to the difference in the two close
frequencies. Artists use this phenomenon often
while tuning their instruments with each other.
They go on tuning until their sensitive ears do
not detect any beats.

To see this mathematically, let us consider
two harmonic sound waves of nearly equal
angular frequency ω

1
 and ω

2
 and fix the location

to be x = 0 for convenience. Eq. (15.2) with a
suitable choice of phase (φ = π/2 for each) and,
assuming equal amplitudes, gives
 s

1
 = a 

 
cos ω

1
t   and  s

2
 = a 

 
cos ω

2
t         (15.45)

Here we have replaced the symbol y by s,
since we are referring to longitudinal not
transverse displacement. Let ω

1
 be the (slightly)

greater of the two frequencies. The resultant
displacement is, by the principle of
superposition,

s =  s
1
 + s

2
 = a (cos

 
ω

1 
t + cos ω

2 
t)

Using the familiar trignometric identity for
cos A + cosB, we get

( ) ( )1 2 1 2
 2 cos  cos

2 2

t t
a

ω ω ω ω  − +
= (15.46)

which may be written as :
s = [2 a  cos ω

b 
t ] cos ω

a
t (15.47)

If |ω
1 
– ω

2
| <<ω

1
, ω

2
, ω

a
 >> ω

b
, th

where

ω
b
 = ( )1 2

2

ω ω −  and  ω
a
 = ( )1 2

2

ω ω +

Now if we assume |ω
1 
– ω

2
| <<ω

1
, which means

ω
a
 >> ω

b
, we can interpret Eq. (15.47) as follows.

The resultant wave is oscillating with the average
angular frequency ω

a
; however its amplitude is

not constant in time, unlike a pure harmonic
wave. The amplitude is the largest when the
term cos ω

b 
t takes its limit +1 or –1. In other

words, the intensity of the resultant wave waxes
and wanes with a frequency which is 2ω

b
 = ω

1
 –

Fig. 15.15 Standing waves in an open pipe, first four

harmonics are depicted.

Musical Pillars
Temples often have
some pillars
portraying human
figures playing
musical instru-
ments, but seldom
do these pillars
themselves produce
music. At the
Nellaiappar temple
in Tamil Nadu,
gentle taps on a

cluster of pillars carved out of a single piece
of rock produce the basic notes of Indian
classical music, viz. Sa, Re, Ga, Ma, Pa, Dha,
Ni, Sa. Vibrations of these pillars depend on
elasticity of the stone used, its density and
shape.

Musical pillars are categorised into three
types: The first is called the Shruti Pillar,
as it can produce the basic notes —  the
“swaras”. The second type is the Gana
Thoongal, which generates the basic tunes
that make up the “ragas”. The third variety
is the Laya Thoongal pillars that produce
“taal” (beats) when tapped. The pillars at the
Nellaiappar temple are a combination of the
Shruti and Laya types.

Archaeologists date the Nelliappar
temple to the 7th century and claim it was
built by successive rulers of the Pandyan
dynasty.

The musical pillars of Nelliappar and
several other temples in southern India like
those at Hampi (picture), Kanyakumari, and
Thiruvananthapuram are unique to the
country and have no parallel in any other
part of the world.
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decreases as it recedes away. When we
approach a stationary source of sound with high
speed, the pitch of the sound heard appears to
be higher than that of the source. As the
observer recedes away from the source, the
observed pitch (or frequency) becomes lower
than that of the source. This motion-related
frequency change is called Doppler effect. The
Austrian physicist Johann Christian Doppler
first proposed the effect in 1842. Buys Ballot in
Holland tested it experimentally in 1845.
Doppler effect is a wave phenomenon, it holds
not only for sound waves but also for
electromagnetic waves. However, here we shall
consider only sound waves.

We shall analyse changes in frequency under
three different situations: (1) observer is

Reflection of sound in an open
pipe

When a high
pressure pulse of
air travelling down
an open pipe
reaches the other
end, its momentum
drags the air out
into the open, where
pressure falls
rapidly to the
a t m o s p h e r i c
pressure. As a

result the air following after it in the tube is
pushed out. The low pressure at the end of
the tube draws air from further up the tube.
The air gets drawn towards the open end
forcing the low pressure region to move
upwards. As a result a pulse of high pressure
air travelling down the tube turns into a
pulse of low pressure air travelling up the
tube. We say a pressure wave has been
reflected at the open end with a change in
phase of 1800. Standing waves in an open
pipe organ like the flute is a result of this
phenomenon.

Compare this with what happens when
a pulse of high pressure air arrives at a
closed end: it collides and as a result pushes
the air back in the opposite direction. Here,
we say that the pressure wave is reflected,
with no change in phase.

Fig. 15.16 Superposition of two harmonic waves, one

of frequency 11 Hz (a), and the other of

frequency 9Hz (b), giving rise to beats of

frequency 2 Hz, as shown in (c).

ω
2
. Since  ω = 2πν, the beat frequency ν

beat
, is

given by
ν

beat
 = ν

1
 – ν

2
(15.48)

Fig. 15.16 illustrates the phenomenon of
beats for two harmonic waves of frequencies 11
Hz and 9 Hz. The amplitude of the resultant wave

shows beats at a frequency of 2 Hz.

uuuuu Example 15.6  Two sitar strings A and B
playing the note ‘Dha’ are slightly out of
tune and produce beats of frequency 5 Hz.
The tension of the string B is slightly
increased and the beat frequency is found
to decrease to 3 Hz. What is the original
frequency of B if the frequency of A is
427 Hz ?

Answer Increase in the tension of a string
increases its frequency. If the original frequency
of B (ν

B
) were greater than that of A (ν

A 
), further

increase in ν
B
 should have resulted in an

increase in the beat frequency. But the beat
frequency is found to decrease. This shows that
ν

B
 < ν

A
. Since ν

A
 – ν

B
 = 5 Hz, and ν

A
 = 427 Hz, we

get ν
B
 = 422 Hz.       t

15.8    DOPPLER EFFECT

It is an everyday experience that the pitch (or
frequency) of the whistle of a fast moving train
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stationary but the source is moving, (2) observer
is moving but the source is stationary, and (3)
both the observer and the source are moving.
The situations (1) and (2) differ from each other
because of the absence or presence of relative
motion between the observer and the medium.
Most waves require a medium for their
propagation; however, electromagnetic waves do
not require any medium for propagation. If there
is no medium present, the Doppler shifts are
same irrespective of whether the source moves
or the observer moves, since there is no way of
distinction between the two situations.

15.8.1    Source Moving ; Observer Stationary

Let us choose the convention to take the
direction from the observer to the source as
the positive direction of velocity. Consider a
source S moving with velocity vs and an observer
who is stationary in a frame in which the
medium is also at rest. Let the speed of a wave
of angular frequency ω and period To, both
measured by an observer at rest with respect to
the medium, be v. We assume that the observer
has a detector that counts every time a wave
crest reaches it. As shown in
Fig. 15.17, at time t = 0 the source is at point S1,

located at a distance L from the observer,  and
emits a crest.  This reaches the observer at time
t1 = L/v. At time t = To the source has moved a
distance vsTo and is at point S2, located at a
distance (L + vsTo) from the observer. At S2, the
source emits a second crest. This reaches the
observer at

( )s 0

2 0

 
   

L T
t T

v

υ +
= +

At time n To, the source emits its (n+1)th crest
and this reaches the observer at time

( )s 0

+1 0

 
    n

L n T
t n T

v

υ +
= +

Hence, in a time interval

nT
L nv T

v

L

v

s

0 +
+( )

−










  
 

0

the observer’s detector counts n crests and the
observer records the period of the wave as T
given by

T nT
L n T

v

L

v
n  

 
/  

s 0
= +

+( )
−









0

 v

   =  
s 0

0

v T
T

v
+

=  
s

0 1
v

T
v

 
+ 

 
(15.49)

Equation (15.49) may be rewritten in terms
of the frequency vo that would be measured if
the source and observer were stationary, and
the frequency v observed when the source is
moving, as

v  = 

1

s
0 1

v

v

−
 

+ 
 

v (15.50)

If vs is small compared with the wave speed v,
taking binomial expansion to terms in first order
in vs/v and neglecting higher power, Eq. (15.50)
may be approximated, giving

v  = 0 1 – sv

v

 
 
 

v (15.51)

For a source approaching the observer, we
replace vs by  – vs to get

v  = 0 1 sv

v

 
+ 

 
v                               (15.52)

The observer thus measures a lower frequency
when the source recedes from him than he does
when it is at rest. He measures a higher
frequency when the source approaches him.

15.8.2 Observer Moving; Source
Stationary

Now to derive the Doppler shift when the
observer is moving with velocity vo towards the
source and the source is at rest, we have to
proceed in a different manner. We work in the

Fig. 15.17 Doppler effect (change in frequency of

wave) detected when the source is moving

and the observer is at rest in the medium.
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reference frame of the moving observer. In this
reference frame the source and medium are
approaching at speed vo and the speed with
which the wave approaches is vo + v. Following
a similar procedure as in the previous case, we
find that the time interval between the arrival
of the first and the (n+1) th crests is

0 0
+1 1 0

0

    n

nv T
t t n T

v v
− = −

+

The observer thus, measures the period of the
wave to be










+
=

vv

v
T

0

0
0 –1

= +






T

v

v
0

0

1

1

–

 

giving

v  = ν0
01 +







v

v
(15.53)

If 
0v

v
 is small, the Doppler shift is almost same

whether it is the observer or the source moving
since Eq. (15.53) and the approximate relation
Eq. (15.51 ) are the same.

15.8.3  Both Source and Observer Moving

We will now derive a general expression for
Doppler shift when both the source and the
observer are moving. As before, let us take the
direction from the observer to the source as the
positive direction. Let the source and the
observer be moving with velocities vs and vo

respectively as shown in Fig.15.18. Suppose at
time t = 0, the observer is at O1 and the source
is at S1, O1 being to the left of S1. The source
emits a wave of velocity v, of frequency v and

period T0 all measured by an observer at rest

with respect to the medium. Let L be the

distance between O1 and S1 at t = 0, when the

source emits the first crest. Now, since the

observer is moving, the velocity of the wave

relative to the observer is v +v0.
 Therefore, the

first crest reaches the observer at time t1 = L/

(v+v0 ). At time t = T0, both the observer and the

source have moved to their new positions O2 and

S2 respectively. The new distance between the

observer and the source, O2 S2, would be

L+(vs–v0 ) T0]. At S2, the source emits a

second crest.

Application of Doppler effect

The change in frequency caused by a moving object
due to Doppler effect is used to measure their
velocities in diverse areas such as military,
medical science, astrophysics, etc. It is also used
by police to check over-speeding of vehicles.

A sound wave or electromagnetic wave of
known frequency is sent towards a moving object.
Some part of the wave is reflected from the object
and its frequency is detected by the monitoring
station. This change in frequency is called Doppler
shift.

It is used at airports to guide aircraft, and in
the military to detect enemy aircraft.
Astrophysicists use it to measure the velocities
of stars.

Doctors use it to study heart beats and blood
flow in different parts of the body. Here they use
ulltrasonic waves, and in common practice, it is
called sonography. Ultrasonic waves enter the
body of the person, some of them are reflected
back, and give information about motion of blood
and pulsation of heart valves, as well as pulsation
of the heart of the foetus. In the case of heart,
the picture generated is called echocardiogram.

Fig. 15.18 Doppler effect when both the source and

observer are moving with different

velocities.

This reaches the observer at time.

t2 = To + [L + (vs – vo)To )] /(v + vo)

At time nTo the source emits its (n+1) th crest
and this reaches the observer at time

tn+1 = nTo + [L + n (vs – vo)To)] /(v + vo )

Hence, in a time interval tn+1 –t1, i.e.,

nTo + [L + n (vs – vo)To)] /(v + vo ) – L /(v + vo ),
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the observer counts n crests and the observer
records the period of the wave as equal to T given by

0 0

0 0

-
  1

  
s o sv v v v

T T T
v v v v

   +
= + =   

+ +   

(15.54)

The frequency v observed by the observer is
given by

(15.55)

Consider a passenger sitting in a train moving
on a straight track. Suppose she hears a whistle
sounded by the driver of the train.  What
frequency will she measure or hear? Here both
the observer and the source are moving with
the same velocity, so there will be no shift in
frequency and the passenger will note the
natural frequency. But an observer outside who
is stationary with respect to the track will note
a higher frequency if the train is approaching
him and a lower frequency when it recedes
from him.

Note that we have defined the direction from
the observer to the source as the positive
direction. Therefore, if the observer is moving
towards the source, v0 has a positive (numerical)
value whereas if O is moving away from S, v0

has a negative value. On the other hand, if S is
moving away from O, vs has a positive value
whereas if it is moving towards O, vs has a
negative value. The sound emitted by the source
travels in all directions. It is that part of sound
coming towards the observer which the  observer
receives and detects. Therefore, the relative
velocity of sound with respect to the observer is
v + v

0
 in all cases.

uuuuu Example 15.7  A rocket is moving at a
speed of 200 m s–1 towards a stationary
target. While moving, it emits a wave of
frequency 1000 Hz. Some of the sound
reaching the target gets reflected back to the
rocket as an echo. Calculate (1) the
frequency of the sound as detected by the
target and (2) the frequency of the echo as
detected by the rocket.

Answer (1) The observer is at rest and the
source is moving with a speed of 200 m s–1. Since
this is comparable with the velocity of sound,
330 m s–1, we must use Eq. (15.50) and not the
approximate Eq. (15.51). Since the source is
approaching a stationary target, v

o
 = 0, and v

s

must be replaced by –v
s
.
 
Thus, we have

1

1

−











−=

v
sv

  0vv

 v = 1000 Hz × [1 – 200 m s–1/330 m s–1]–1

     j  2540 Hz

(2) The target is now the source (because it is
the source of echo) and the rocket’s detector is
now the detector or observer (because it detects
echo). Thus, v

s
 = 0 and v

o
 has a positive value.

The frequency of the sound emitted by the source
(the target) is v, the frequency intercepted by
the target and not v

o
. Therefore, the frequency

as registered by the rocket is

v′ = 0 
v v

v

+ 
 
 
 

v 

j 4080 Hz  t
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SUMMARY

1. Mechanical waves can exist in material media and are governed by Newton’s Laws.

2. Transverse waves are waves in which the particles of the medium oscillate perpendicular
to the direction of wave propagation.

3. Longitudinal waves are waves in which the particles of the medium oscillate along the
direction of wave propagation.

4. Progressive wave is a wave that moves from one point of medium to another.

5. The displacement in a sinusoidal wave propagating in the positive x direction is given
by

y (x, t) = a sin (kx – ωt + φ)

where a is the amplitude of the wave, k is the angular wave number, ω is the angular
frequency, (kx – ωt + φ) is the phase, and φ is the phase constant or phase angle.

6. Wavelength λ of a progressive wave is the distance between two consecutive points of
the same phase at a given time. In a stationary wave, it is twice the distance between
two  consecutive nodes or antinodes.

7. Period T of oscillation of a wave is defined as the time any element of the medium
takes to move through one complete oscillation. It is related to the angular frequency ω
through the relation

T =
2π

ω

8. Frequency v of a wave is defined as 1/T and is related to angular frequency by

2

ω
ν =

π

9. Speed of a progressive wave is given by 
k T

v
ω λ

λν= = =

10.  The speed of a transverse wave on a stretched string is set by the properties of the
string. The speed on a string with tension T and linear mass density µ is

v =
T

µ

11. Sound waves are longitudinal mechanical waves that can travel through solids, liquids,
or gases. The speed v of sound wave in a fluid having bulk modulus B and density ρ is

v
B

=
ρ

The speed of longitudinal waves in a metallic bar is

v
Y

=
ρ

For  gases,  since B = γP, the speed of sound is

v
P

=
γ

ρ
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12. When two or more waves traverse simultaneously in the same medium, the

displacement of any element of the medium is the algebraic sum of the displacements
due to each wave. This is known as the principle of superposition of waves

1

(   )
n

i

i

y f x vt
=

= −∑

13. Two sinusoidal waves on the same string exhibit interference, adding or cancelling
according to the principle of superposition. If the two are travelling in the same
direction and have the same amplitude a and frequency but differ in phase by a phase

constant φ, the result is a single wave with the same frequency ω :

y     (x, t)  = 2
1

2

1

2
a kxcos sinφ ω φ







− +







 t 

If φ = 0 or an integral multiple of 2π, the waves are exactly in phase and the interference
is constructive; if φ = π, they are exactly out of phase and the interference is destructive.

14. A travelling wave, at a rigid boundary or a closed end, is reflected with a phase reversal
but the reflection at an open boundary takes place without any phase change.

For an incident wave

                           y
i 
(x, t) = a sin (kx – ωt )

the reflected wave at a rigid boundary is

                         y
r 
(x, t) = – a sin (kx + ωt )

For reflection at an open boundary

                       y
r 
(x,t ) = a sin (kx + ωt)

15. The interference of two identical waves moving in opposite directions produces standing

waves. For a string with fixed ends, the standing wave is given by

y (x, t) = [2a sin kx ] cos ωt

Standing waves are characterised by fixed locations of zero displacement called nodes

and fixed locations of maximum displacements called antinodes. The separation between
two consecutive nodes or antinodes is λ/2.

A stretched string of length L fixed at both the ends vibrates with frequencies given by

v  ,
2

=
n v

L
     n = 1, 2, 3, ...

The set of frequencies given by the above relation are called the normal modes of
oscillation of the system. The oscillation mode with lowest frequency is called the
fundamental mode or the first harmonic. The second harmonic is the oscillation mode
with n = 2 and so on.

A pipe of length L with one end closed and other end open (such as air columns)
vibrates with frequencies given by

v ( )n ½  
2L

v
= + ,       n = 0, 1, 2, 3, ...

The set of frequencies represented by the above relation are the normal modes of
oscillation of such a system. The lowest frequency given by v/4L is the fundamental
mode or the first harmonic.

16. A string of length L fixed at both ends or an air column closed at one end and open at
the other end or open at both the ends, vibrates with certain frequencies called their
normal modes. Each of these frequencies is a resonant frequency of the system.

17. Beats arise when two waves having slightly different frequencies, ν
1
 and ν

2
 and

comparable amplitudes, are superposed. The beat frequency is

ν
beat

 = ν
1
 ~ ν

2
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18. The Doppler effect is a change in the observed frequency of a wave when the source (S)
or  the observer (O) or both move(s) relative to the medium. For sound the observed
frequency ν is given in terms of the source frequency ν

o
 by

v = v
o
 0

 
s

v v

v v

 +
 
 +
 

here v is the speed of sound through the medium, v
o
 is the velocity of observer relative

to the medium, and v
s
 is the source velocity relative to the medium. In using this

formula, velocities in the direction OS should be treated as positive and those opposite
to it should be taken to be negative.

POINTS TO PONDER

1. A wave is not motion of matter as a whole in a medium.  A wind is different from the
sound wave in air.  The former involves motion of air from one place to the other.  The
latter involves compressions and rarefactions of layers of air.

2. In a wave, energy and not the matter is transferred from one point to the other.

3. In a mechanical wave, energy transfer takes place because of the coupling through

elastic forces between neighbouring oscillating parts of the medium.

4. Transverse waves can propagate only in medium with shear modulus of elasticity,
Longitudinal waves need bulk modulus of elasticity and are therefore, possible in all
media, solids, liquids and gases.

5. In a harmonic progressive wave of a given frequency, all particles have the same
amplitude but different phases at a given instant of time.  In a stationary wave, all
particles between two nodes have the same phase at a given instant but have different
amplitudes.

6. Relative to an observer at rest in a medium the speed of a mechanical wave in that
medium (v) depends only on elastic and other properties (such as mass density) of
the medium. It does not depend on the velocity of the source.

7. For an observer moving with velocity v
o
 relative to the medium, the speed of a wave is

obviously different from v and is given by v ± v
o
.
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EXERCISES

15.1 A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched

string is 20.0 m. If the transverse jerk is struck at one end of the string, how long

does the disturbance take to reach the other end?

15.2 A stone dropped from the top of a tower of height 300 m splashes into the water of

a pond near the base of the tower. When is the splash heard at the top given that

the speed of sound in air is 340 m s–1 ? (g = 9.8 m s–2)

15.3 A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the

tension in the wire so that speed of a transverse wave on the wire equals the speed

of sound in dry air at 20 °C = 343 m s–1.

15.4 Use the formula v  
P

=
γ

ρ
to explain why the speed of sound in air

(a) is independent of pressure,

(b) increases with temperature,

(c) increases with humidity.

15.5 You have learnt that a travelling wave in one dimension is represented by a function

y = f (x, t) where x and t must appear in the combination x – v t or x + v t, i.e.

y = f (x ± v t). Is the converse true? Examine if the following functions for y can

possibly represent a travelling wave :

(a) (x – vt )2

(b) log [(x + vt)/x
0
]

(c) 1/(x + vt)

15.6 A bat emits ultrasonic sound of frequency 1000 kHz in air. If the sound meets a

water surface, what is the wavelength of (a) the reflected sound, (b) the transmitted

sound? Speed of sound in air is 340 m s –1 and in water 1486 m s–1.

15.7 A hospital uses an ultrasonic scanner to locate tumours in a tissue. What is the

wavelength of sound in the tissue in which the speed of sound is 1.7 km s–1 ? The

operating frequency of the scanner is 4.2 MHz.

15.8 A transverse harmonic wave on a string is described by

                    y(x, t) = 3.0 sin (36  t + 0.018 x + π/4)

where x and y are in cm and t in s. The positive direction of x is from left to right.

(a) Is this a travelling wave or a stationary wave ?

If it is travelling, what are the speed and direction of its propagation ?

(b) What are its amplitude and frequency ?

(c) What is the initial phase at the origin ?

(d) What is the least distance between two successive crests in the wave ?

15.9 For the wave described in Exercise 15.8, plot the displacement (y) versus (t) graphs

for x = 0, 2 and 4 cm. What are the shapes of these graphs? In which aspects does

the oscillatory motion in travelling wave differ from one point to another: amplitude,

frequency or phase ?

15.10   For the travelling harmonic wave

y(x, t) = 2.0 cos 2π (10t – 0.0080 x + 0.35)
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where x and y are in cm and t in s. Calculate the phase difference between oscillatory
motion of two points separated by a distance of

(a) 4 m,

(b) 0.5 m,

(c) λ/2,

(d) 3λ/4

15.11 The transverse displacement of a string (clamped at its both ends) is given by

y(x, t) = 0.06 sin 
2

3

π
x





  cos (120 πt)

where x and y are in m and t in s. The length of the string is 1.5 m and its mass is
3.0 ×10–2 kg.

Answer the following :

(a) Does the function represent a travelling wave or a stationary wave?

(b) Interpret the wave as a superposition of two waves travelling in opposite
directions. What is the wavelength, frequency, and speed of each wave ?

(c) Determine the tension in the string.

15.12 (i) For the wave on a string described in Exercise 15.11, do all the points on the

string oscillate with the same (a) frequency, (b) phase, (c) amplitude? Explain

your answers. (ii) What is the amplitude of a point 0.375 m away from one end?

15.13 Given below are some functions of x and t to represent the displacement (transverse

or longitudinal) of an elastic wave. State which of these represent (i) a travelling

wave, (ii) a stationary wave or (iii) none at all:

(a) y = 2 cos (3x) sin (10t)

(b) y x  vt  = −2

(c) y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)

(d) y = cos x sin t + cos 2x sin 2t

15.14 A wire stretched between two rigid supports vibrates in its fundamental mode with

a frequency of 45 Hz. The mass of the wire is 3.5 × 10–2  kg and its linear mass density

is 4.0 × 10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and

(b) the tension in the string?

15.15 A metre-long tube open at one end, with a movable piston at the other end, shows

resonance with a fixed frequency source  (a tuning fork of frequency 340 Hz) when

the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the

temperature of the experiment. The edge effects may be neglected.

15.16 A steel rod 100 cm long is clamped at its middle. The fundamental frequency of

longitudinal vibrations of the rod are given to be 2.53 kHz. What is the speed of

sound in steel?

15.17 A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is

resonantly excited by a 430 Hz source ? Will the same source be in resonance with

the pipe if both ends are open? (speed of sound in air is 340 m s–1).

15.18 Two sitar strings A and B playing the note ‘Ga’ are slightly out of tune and produce

beats of frequency 6 Hz. The tension in the string A is slightly reduced and the
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beat  frequency is found to reduce to 3 Hz. If the original frequency of A is 324 Hz,

what is the frequency of B?

15.19 Explain why (or how):

(a) in a sound wave, a displacement node is a pressure antinode and vice versa,

(b) bats can ascertain distances, directions, nature, and sizes of the obstacles

without any “eyes”,

(c) a violin note and sitar note may have the same frequency, yet we can

distinguish between the two notes,

(d) solids can support both longitudinal and transverse waves, but only

longitudinal waves can propagate in gases, and

(e) the shape of a pulse gets distorted during propagation in a dispersive medium.

15.20 A train, standing at the outer signal of a railway station blows a whistle of frequency

400 Hz in still air. (i) What is the frequency of the whistle for a platform observer

when the train (a) approaches the platform with a speed of 10 m s–1, (b) recedes

from the platform with a speed of 10 m s–1? (ii) What is the speed of sound in each

case ? The speed of sound in still air can be taken as 340 m s–1.

15.21 A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still

air. The wind starts blowing in the direction from the yard to the station with a

speed of 10 m s–1. What are the frequency, wavelength, and speed of sound for an

observer standing on the station’s platform? Is the situation exactly identical to

the case when the air is still and the observer runs towards the yard at a speed of

10 m s–1? The speed of sound in still air can be taken as 340 m s–1

Additional Exercises

15.22 A travelling harmonic wave on a string is described by

y(x, t) = 7.5 sin (0.0050x +12t + π/4)

(a)what are the displacement and velocity of oscillation of a point at

x = 1 cm, and t = 1 s? Is this velocity equal to the velocity of wave propagation?

(b)Locate the points of the string which have the same transverse displacements

and velocity as the x = 1 cm point at t = 2 s, 5 s and 11 s.

15.23 A narrow sound pulse (for example, a short pip by a whistle) is sent across a

medium. (a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed

of propagation? (b) If the pulse rate is 1 after every 20 s, (that is the whistle is

blown for a split of second after every 20 s), is the frequency of the note produced

by the whistle equal to 1/20 or 0.05 Hz ?

15.24 One end of a long string of linear mass density 8.0 × 10–3 kg m–1 is connected to an

electrically driven tuning fork of frequency 256 Hz. The other end passes over a

pulley and is tied to a pan containing a mass of 90 kg. The pulley end absorbs all

the incoming energy so that reflected waves at this end have negligible amplitude.

At t = 0, the left end (fork end) of the string x = 0 has zero transverse displacement

(y = 0) and is moving along positive y-direction. The amplitude of the wave is 5.0

cm. Write down the transverse displacement y as function of x and t that describes

the wave on the string.

15.25 A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy

submarine moves towards the SONAR with a speed of 360 km h–1. What is the

frequency of sound reflected by the submarine ? Take the speed of sound in  water

to be 1450 m s–1.
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15.26 Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can
experience both transverse (S) and longitudinal (P) sound waves. Typically the speed
of S  wave is about 4.0 km s–1, and that of P wave is 8.0 km s–1. A seismograph
records P and S waves from an earthquake. The first P wave arrives 4 min before the
first S wave. Assuming the waves travel in straight line, at what distance does the
earthquake occur ?

15.27 A bat is flitting about in a cave, navigating via ultrasonic beeps. Assume that the
sound emission frequency of the bat is 40 kHz. During one fast swoop directly
toward a flat wall surface, the bat is moving at 0.03 times the speed of sound in air.
What frequency does the bat hear reflected off the wall ?
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Chapter   9

9.1 1.8

9.2 (a) From the given graph for a stress of 150 × 106 N m–2 the strain is 0.002

(b) Approximate yield strength of the material is 3 × 108 N m–2

9.3 (a) Material A

(b) Strength of a material is determined by the amount of stress required to cause
 fracture: material A is stronger than material B.

9.4 (a) False  (b) True

9.5 1.5 × 10–4 m (steel); 1.3 × 10–4 m (brass)

9.6 Deflection = 4 × 10–6 m

9.7 2.8 × 10–6

9.8 0.127

9.9 7.07 × 10
4 
N

9.10 D
copper

/D
iron

 = 1.25

9.11 1.539 × 10–4 m

9.12 2.026 × 109 Pa

9.13 1.034 × 103 kg/m3

9.14 0.0027

9.15 0.058 cm3

9.16 2.2 × 106 N/m2

 ANSWERS
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9.17 Pressure at the tip of anvil is 2.5 × 1011 Pa

9.18 (a) 0.7 m (b)  0.43 m from steel wire

9.19 Approximately 0.01 m

9.20 260 kN

9.21 2.51 × 10–4 m3

Chapter   10

10.3 (a) decreases (b) η of gases increases, η of liquid decreases with temperature (c) shear
strain, rate of shear strain (d) conservation of mass, Bernoulli’s equation (e) greater.

10.5  6.2 × 106 Pa

10.6  10.5 m

10.7 Pressure at that depth in the sea is about 3 × 107 Pa. The structure is suitable since it
can withstand far greater pressure or stress.

10.8 6.92 × 105 Pa

10.9 0.800

10.10 Mercury will rise in the arm containing spirit; the difference in levels of mercury will be
0.221 cm.

10.11 No, Bernoulli’s principle applies to streamline flow only.

10.12 No, unless the atmospheric pressures at the two points where Bernoulli’s equation is
applied are significantly different.

10.13 9.8 × 102 Pa (The Reynolds number is about 0.3 so the flow is laminar).

10.14 1.5 × 103 N

10.15 Fig (a) is incorrect [Reason: at a constriction (i.e. where the area of cross-section of the
tube is smaller), flow speed is larger due to mass conservation. Consequently pressure
there is smaller according to Bernoulli’s equation. We assume the fluid to be
incompressible].

10.16 0.64 m s–1

10.17 2.5 × 10–2 N m–1

10.18 4.5 × 10–2  N for (b) and (c), the same as in (a).

10.19 Excess pressure = 310 Pa, total pressure = 1.0131 × 105 Pa. However, since data are
correct to three significant figures, we should write total pressure inside the drop as
1.01 × 105 Pa.
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10.20 Excess pressure inside the soap bubble = 20.0 Pa; excess pressure inside the air bubble
in soap solution = 10.0 Pa. Outside pressure for air bubble = 1.01 × 105 + 0.4 × 103 × 9.8
× 1.2 = 1.06 × 105 Pa. The excess pressure is so small that up to three significant
figures, total pressure inside the air bubble is 1.06 × 105 Pa.

10.21 55 N (Note, the base area does not affect the answer)

10.22 (a) absolute pressure = 96 cm of Hg; gauge pressure = 20 cm of Hg for (a), absolute
pressure = 58 cm of Hg, gauge pressure = -18 cm of Hg for (b); (b) mercury would rise in
the left limb such that the difference in its levels in the two limbs becomes19 cm.

10.23 Pressure (and therefore force) on the two equal base areas are identical. But force is
exerted by water on the sides of the vessels also, which has a nonzero vertical component
when the sides of the vessel are not perfectly normal to the base. This net vertical
component of force by water on sides of the vessel is greater for the first vessel than the
second. Hence the vessels weigh different even when the force on the base is the same
in the two cases.

10.24 0.2 m

10.25 (a) The pressure drop is greater (b) More important with increasing flow velocity.

10.26 (a)  0.98 m s–1;   (b) 1.24 × 10–5 m3 s–1

10.27 4393 kg

10.28 5.8 cm s–1,  3.9 × 10–10 N

10.29 5.34 mm

10.30 For the first bore, pressure difference (between the concave and convex side) = 2 × 7.3
× 10–2 / 3 × 10–3 = 48.7 Pa. Similarly for the second bore, pressure difference = 97.3 Pa.
Consequently, the level difference in the two bores is  [48.7 / ( 103 × 9.8 )] m = 5.0 mm.

The level in the narrower bore is higher. (Note, for zero angle of contact, the radius of the
meniscus equals radius of the bore. The concave side of the surface in each bore is at 1 atm).

10.31 (b) 8 km. If we consider the variation of g with altitude the height is somewhat more,
about 8.2 km.

Chapter   11

11.1 Neon:  – 248.58 °C  = – 415.44 °F;

CO
2
:  – 56.60 °C  =  – 69.88 °F

(use  t
F
  =  32

5

9

c
+t )

11.2 T
A
  = ( 4/7)  T

B

11.3 384.8 K

11.4 (a) Triple-point has a unique temperature; fusion point and boiling point temperatures
depend on pressure; (b) The other fixed point is the absolute zero itself; (c) Triple-point
is 0.01°C, not 0 °C; (d)  491.69.
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11.5 (a)  T
A
  =  392.69 K, T

B
 =  391.98 K;  (b) The discrepancy arises because the gases are not

perfectly ideal.  To reduce the discrepancy, readings should be taken for lower and
lower pressures and the plot between temperature measured versus absolute pressure
of the gas at triple point should be extrapolated to obtain temperature in the limit
pressure tends to zero, when the gases approach ideal gas behaviour.

11.6 Actual length of the rod at 45.0 °C = (63.0 + 0.0136) cm = 63.0136 cm.  (However, we
should say that change in length up to three significant figures is 0.0136 cm, but the
total length is 63.0 cm, up to three significant places. Length of the same rod at 27.0 °C
=  63.0 cm.

11.7 When the shaft is cooled to temperature – 690C the wheel can slip on the shaft.

11.8 The diameter increases by an amount = 1.44 × 10–2 cm.

11.9 3.8 × 102 N

11.10 Since the ends of the combined rod are not clamped, each rod expands freely.

∆l
brass

 =  0.21  cm, ∆l
steel

  =  0.126 cm  =  0.13 cm

Total change in length = 0.34 cm. No ‘thermal stress’ is developed at the junction since
the rods freely expand.

11.11 0.0147  =  1.5 × 10– 2

11.12 103 °C

11.13 1.5 kg

11.14 0.43 J g –1 K–1 ; smaller

11.15 The gases are diatomic, and have other degrees of freedom  (i.e. have other modes of
motion) possible besides the translational degrees of freedom.  To raise the temperature
of the gas by a certain amount, heat is to be supplied to increase the average energy of
all the modes.  Consequently, molar specific heat of diatomic  gases is more than that of
monatomic gases. It can be shown that if only rotational modes of motion are considered,
the molar specific heat of diatomic gases is nearly (5/2) R which agrees with the
observations for all the gases listed in the table, except chlorine.  The higher value of
molar specific heat of chlorine indicates that besides rotational modes, vibrational modes
are also present in chlorine at room temperature.

11.16 4.3 g/min

11.17 3.7 kg

11.18 238 °C

11.20 9 min

11.21 (a) At the triple point temperature = – 56.6 °C and pressure = 5.11 atm.

(b) Both the boiling point and freezing point of CO
2
 decrease if pressure decreases.

(c) The critical temperature and pressure of CO
2
 are 31.1 °C and 73.0 atm, respectively.

Above this temperature, CO
2
 will not liquefy even if compressed to high pressures.

(d) (a)  vapour  (b)  solid  (c)  liquid

11.22 (a) No, vapour condenses to solid directly.

(b) It condenses to solid directly without passing through the liquid phase.
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(c) It turns to liquid phase and then to vapour phase.  The fusion and  boiling points
are where the horizontal line on P –T diagram at the constant pressure of 10 atm
intersects the fusion and vaporisation curves.

(d) It will not exhibit any clear transition to the liquid phase, but will depart  more and
more from ideal gas behaviour as its pressure increases.

Chapter   12

12.1 16 g per min

12.2 934 J

12.4 2.64

12.5 16.9 J

12.6 (a) 0.5 atm (b) zero (c) zero (assuming the gas to be ideal) (d) No, since the process
(called free expansion) is rapid and cannot be controlled. The intermediate states are
non-equilibrium states and do not satisfy the gas equation. In due course, the gas
does return to an equilibrium state.

12.7 15%, 3.1×109 J

12.8 25 W

12.9 450 J

12.10 10.4

Chapter   13

13.1 4 × 10–4

13.3 (a)  The dotted plot corresponds to ‘ideal’ gas behaviour;  (b) T
1
 > T

2
; (c) 0.26 J K–1;

(d) No, 6.3 × 10–5 kg  of H
2
 would yield the same value

13.4 0.14  kg

13.5 5.3 × 10–6   m3

13.6 6.10 × 1026

13.7 (a)  6.2 × 10–21 J (b)  1.24 × 10–19 J                 (c) 2.1 × 10–16 J

13.8 Yes, according to Avogadro’s law.  No, v
rms

 is largest for the lightest of the three gases;
neon.

13.9 2.52 × 103 K
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13.10 Use the formula for mean free path :

=
π 2

1

2
l

nd

where d is the diameter of a molecule.  For the given pressure and temperature
N/V = 5.10 × 1025 m–3 and   = 1.0 × 10–7 m.  v

rms
 = 5.1 × 102 m s–1.

collisional frequency = 
9 –1rms 5.1 10 s

v

l
= × . Time taken for the collision = d / v

rms
  = 4 × 10–13 s.

Time taken between successive collisions = l / v
rms

 = 2 × 10-10 s. Thus the time taken
between successive collisions is 500 times the time taken for a collision. Thus a molecule
in a gas moves essentially free for most of the time.

13.11 Nearly 24 cm of mercury flows out, and the remaining 52 cm of mercury thread plus the
48 cm of air above it remain in equilibrium with the outside atmospheric pressure (We
assume there is no change in temperature throughout).

13.12 Oxygen

13.14 Carbon[1.29 Å ]; Gold [1.59 Å]; Liquid Nitrogen [1.77 Å ]; Lithium [ 1.73 Å ]; Liquid
fluorine[1.88 Å ]

Chapter   14

14.1 (b), (c)

14.2 (b) and (c): SHM; (a) and (d) represent periodic but not SHM [A polyatomic molecule has a
number of natural frequencies; so in general, its vibration is a superposition of SHM’s of
a number of different frequencies. This superposition is periodic but not SHM].

14.3 (b) and (d) are periodic, each with a period of 2 s; (a) and (c) are not periodic. [Note in (c),
repetition of merely one position is not enough for motion to be periodic; the entire
motion during one period must be repeated successively].

14.4 (a) Simple harmonic, T = (2π/ω); (b) periodic, T =(2π/ω) but not simple harmonic;
(c) simple harmonic, T = (π/ω); (d) periodic, T = (2π/ω) but not simple harmonic;
(e) non-periodic; (f) non-periodic (physically not acceptable as the function → ∞ as t → ∞.

14.5 (a) 0, +, + ; (b) 0, –, – ; (c) –, 0,0 ;  (d) –, –, – ;  (e) +, +, + ;   (f ) –, –, –.

14.6 (c) represents a simple harmonic motion.

14.7 A = 2  cm, φ = 7π/4; B = 2  cm, a = π/4.

14.8 219 N

14.9 Frequency 3.2 s–1; maximum acceleration of the mass 8.0 m s–2; maximum speed of the
mass 0.4 m s–1.

14.10 (a) x = 2 sin 20t

(b) x = 2 cos 20t

(c) x = – 2 cos 20t

2020-21



ANSWERS 401

where x is in cm. These functions differ neither in amplitude nor frequency.
They differ in initial phase.

14.11 (a) x = – 3 sin πt where x is in cm.

(b) x = – 2 cos 
π

2
t  where x is in cm.

14.13 (a) F/k for both (a) and (b).

(b) T = 2π
m

k
for (a) and 2π

k

m

2

 for (b)

14.14 100 m/min

14.15 8.4 s

14.16 (a) For a simple pendulum, k itself is proportional to m, so m cancels out.

(b) sin θ < θ ; if the restoring force, mg sin θ is replaced by mgθ, this amounts to

effective reduction in angular acceleration [Eq.(14.27)] for large angles and hence

an increase in time period T over that given by the formula T = 2π
g

l  where one

assumes sinθ = θ.

(c) Yes, the motion in the wristwatch depends on spring action and has nothing to do
with acceleration due to gravity.

(d) Gravity disappears for a man under free fall, so frequency is zero.

14.17
 

π
+2 4 2

T = 2
g /

l

v R
 . Hint: Effective acceleration due to gravity will get reduced

due to radial acceleration v2/R acting in the horizontal plane.

14.18 In equilibrium, weight of the cork equals the up thrust. When the cork is depressed
by an amount x, the net upward force is Axρ

l 
g. Thus the force constant k = Aρ

l 
g .

Using m = Ahρ, and T = 2π
k

m
 one gets the given expression.

14.19 When both the ends are open to the atmosphere, and the difference in levels of the
liquid in the two arms is h, the net force on the liquid column is Ahρg where A is the
area of cross-section of the tube and ρ is the density of the liquid. Since restoring force
is proportional to h, motion is simple harmonic.
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14.20 T = 2π
2

Ba

Vm where B is the bulk modulus of air. For isothermal changes B = P.

14.21 (a)  5 ×104N m–1;  (b) 1344.6 kg s–1

14.22 Hint: Average K.E. = dtmv
T

T

2

0
2

11

∫ ; Average P.E.= dtkx
T

T

∫
0

2

2

11

14.23 Hint: The time period of a torsional pendulum is given by T = 2π

α

I , where I is the

moment of inertia about the axis of rotation. In our case I = 2

2

1
MR , where M is the

mass of the disk and R its radius. Substituting the given values, α = 2.0 N m rad–1.

14.24 (a)  – 5π2 m s–2 ; 0; (b) – 3π2 m s–2; 0.4π m s–1; (c) 0 ; 0.5 π m s–1

14.25

2
2 0
0 2

v
x

ω

 
+ 

 

Chapter  15

15.1 0.5 s

15.2 8.7 s

15.3 2.06 × 104 N

15.4 Assume ideal gas law: P = ρRT

M

, where ρ is the density, M is the molecular mass, and

T is the temperature of the gas. This gives v =
RT

M

γ
. This shows that v is:

(a) Independent of pressure.

(b) Increases as T .

(c) The molecular mass of water (18) is less than that of N
2
 (28) and O

2
 (32).

Therefore as humidity increases, the effective molecular mass of air decreases
and hence v increases.
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15.5 The converse is not true. An obvious requirement for an acceptable function for a
travelling wave is that it should be finite everywhere and at all times. Only function (c)
satisfies this condition, the remaining functions cannot possibly represent a travelling
wave.

15.6 (a)    3.4 × 10–4 m (b)    1.49 × 10–3 m

15.7 4.1 × 10–4 m

15.8 (a) A travelling wave. It travels from right to left with a speed of 20 ms–1.

(b) 3.0 cm, 5.7 Hz

(c) π/4

(d) 3.5 m

15.9 All the graphs are sinusoidal. They have same amplitude and frequency, but
different initial phases.

15.10 (a) 6.4 π rad

(b)   0.8 π rad

(c) π rad

(d) (π/2) rad

15.11 (a) Stationary wave

(b) l = 3 m, n = 60 Hz, and v = 180 m s–1 for each wave

(c ) 648 N

15.12 (a) All the points except the nodes on the string have the same frequency and
phase, but not the same amplitude.

(b) 0.042 m

15.13 (a) Stationary wave.

(b) Unacceptable function for any wave.

(c) Travelling harmonic wave.

(d) Superposition of two stationary waves.

15.14 (a) 79 m s–1

(b) 248 N

15.15 347 m s–1

Hint : v
n
 = 

l

v)n(

4

12 −
 ; n = 1,2,3,….for a pipe with one end closed

15.16 5.06 km s–1
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15.17 First harmonic (fundamental); No.

15.18 318 Hz

15.20 (i)  (a) 412 Hz,   (b) 389 Hz,    (ii) 340 m s–1 in each case.

15.21 400 Hz, 0.875 m, 350 m s–1. No, because in this case, with respect to the medium,
both the observer and the source are in motion.

15.22 (a) 1.666 cm,  87.75 cm s–1; No, the velocity of wave propagation is – 24 m s–1

(b) All points at distances of n λ ( n = ±1, ±2, ±3,….) where λ = 12.6 m from the point
x = 1 cm.

15.23 (a) The pulse does not have a definite wavelength or frequency, but has a definite
speed of propagation (in a non-dispersive medium).

(b) No

15.24 y = 0.05 sin(ωt – kx); here ω = 1.61 ×103 s–1, k = 4.84 m–1; x and y are in m.

15.25 45.9 kHz

15.26 1920 km

15.27 42.47 kHz
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